Sara Helms Cahan
University of Vermont
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sara Helms Cahan.
Journal of Evolutionary Biology | 2013
Richard J. Abbott; Dirk C. Albach; Stephen W. Ansell; Jan W. Arntzen; S. J. E. Baird; N. Bierne; Janette W. Boughman; Alan Brelsford; C. A. Buerkle; Richard J. A. Buggs; Roger K. Butlin; Ulf Dieckmann; Fabrice Eroukhmanoff; Andrea Grill; Sara Helms Cahan; Jo S. Hermansen; Godfrey M. Hewitt; A. G. Hudson; Chris D. Jiggins; J. Jones; Barbara Keller; T. Marczewski; James Mallet; P. Martinez-Rodriguez; Markus Möst; Sean P. Mullen; Richard A. Nichols; Arne W. Nolte; Christian Parisod; Karin S. Pfennig
Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near‐instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky–Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock‐on effects on speciation both within and outside regions of hybridization.
Nature | 2003
Sara Helms Cahan; Laurent Keller
Caste differentiation and division of labour are the hallmarks of insect societies and at the root of their ecological success. Kin selection predicts that caste determination should result from environmentally induced differences in gene expression, a prediction largely supported by empirical data. However, two exceptional cases of genetically determined caste differentiation have recently been found in harvester ants. Here we show that genetic caste determination evolved in these populations after complex hybridization events. We identified four distinct genetic lineages, each consisting of unique blends of the genomes of the parental species, presumably Pogonomyrmex barbatus and P. rugosus. Crosses between lineages H1 and H2 and between J1 and J2 give rise to workers, whereas queens develop from within-lineage matings. Although historical gene flow is evident, genetic exchange among lineages and between lineages and the parental species no longer occurs. This unusual system of caste determination seems to be evolutionarily stable.
Proceedings of the Royal Society of London B: Biological Sciences | 2002
Sara Helms Cahan; Joel D. Parker; Steven W. Rissing; Robert A. Johnson; Tatjana S. Polony; Michael D. Weiser; Deborah R. Smith
The process of reproductive caste determination in eusocial insect colonies is generally understood to be mediated by environmental, rather than genetic factors. We present data demonstrating unexpected genetic differences between reproductive castes in a variant of the rough harvester ant, Pogonomyrmex rugosus var. fuscatus. Across multiple loci, queens were consistently more homozygous than expected, while workers were more heterozygous. Adult colony queens were divided into two highly divergent genetic groups, indicating the presence of two cryptic species, rather than a single population. The observed genetic differences between castes reflect differential representation of heterospecific and conspecific patrilines in these offspring groups. All workers were hybrids; by contrast, winged queens were nearly all pure–species. The complete lack of pure–species workers indicates a loss of worker potential in pure–species female offspring. Hybrids appear to be bipotential, but do not normally develop into reproductives because they are displaced by pure–species females in the reproductive pool. Genetic differences between reproductive castes are expected to be rare in non–hybridizing populations, but within hybrid zones they may be evolutionarily stable and thus much more likely to occur.
Current Biology | 2008
Tanja Schwander; Jean-Yves Humbert; Colin S. Brent; Sara Helms Cahan; Lucille Chapuis; Emanuela Renai; Laurent Keller
Caste differentiation and division of labor are the hallmarks of social insect colonies [1, 2]. The current dogma for female caste differentiation is that female eggs are totipotent, with morphological and physiological differences between queens and workers stemming from a developmental switch during the larval stage controlled by nutritional and other environmental factors (e.g., [3-8]). In this study, we tested whether maternal effects influence caste differentiation in Pogonomyrmex harvester ants. By conducting crossfostering experiments we identified two key factors in the process of caste determination. New queens were produced only from eggs laid by queens exposed to cold. Moreover, there was a strong age effect, with development into queens occurring only in eggs laid by queens that were at least two years old. Biochemical analyses further revealed that the level of ecdysteroids was significantly lower in eggs developing into queens than workers. By contrast, we found no significant effect of colony size or worker exposure to cold, suggesting that the trigger for caste differentiation may be independent of the quantity and quality of resources provided to larvae. Altogether these data demonstrate that the developmental fate of female brood is strongly influenced by maternal effects in ants of the genus Pogonomyrmex.
Current Biology | 2004
Sara Helms Cahan; Glennis E. Julian; Steven W. Rissing; Tanja Schwander; Joel D. Parker; Laurent Keller
Caste differentiation and reproductive division of labor are the hallmarks of insect societies. In ants and other social Hymenoptera, development of female larvae into queens or workers generally results from environmentally induced differences in gene expression. However, several cases in which certain gene combinations may determine reproductive status have been described in bees and ants. We investigated experimentally whether genotype directly influences caste determination in two populations of Pogonomyrmex harvester ants in which genotype-caste associations have been observed. Each population contains two genetic lineages. Queens are polyandrous and mate with males of both lineages , but in mature colonies, over 95% of daughter queens have a pure-lineage genome, whereas all workers are of F1 interlineage ancestry. We found that this pattern is maintained throughout the colony life cycle, even when only a single caste is being produced. Through controlled crosses, we demonstrate that pure-lineage eggs fail to develop into workers even when interlineage brood are not present. Thus, environmental caste determination in these individuals appears to have been lost in favor of a hardwired genetic mechanism. Our results reveal that genetic control of reproductive fate can persist without loss of the eusocial caste structure.
Molecular Ecology | 2006
Tanja Schwander; Sara Helms Cahan; Laurent Keller
Genetic caste determination has been described in two populations of Pogonomyrmex harvester ants, each comprising a pair of interbreeding lineages. Queens mate with males of their own and of the alternate lineage and produce two types of diploid offspring, those fertilized by males of the queens’ lineage which develop into queens and those fertilized by males of the other lineage which develop into workers. Each of the lineages has been shown to be itself of hybrid origin between the species Pogonomyrmex barbatus and Pogonomyrmex rugosus, which both have typical, environmentally determined caste differentiation. In a large scale genetic survey across 35 sites in Arizona, New Mexico and Texas, we found that genetic caste determination associated with pairs of interbreeding lineages occurred frequently (in 26 out of the 35 sites). Overall, we identified eight lineages with genetic caste determination that always co‐occurred in the same complementary lineage pairs. Three of the four lineage pairs appear to have a common origin while their relationship with the fourth remains unclear. The level of genetic differentiation among these eight lineages was significantly higher than the differentiation between P. rugosus and P. barbatus, which questions the appropriate taxonomic status of these genetic lineages. In addition to being genetically isolated from one another, all lineages with genetic caste determination were genetically distinct from P. rugosus and P. barbatus, even when colonies of interbreeding lineages co‐occurred with colonies of either putative parent at the same site. Such nearly complete reproductive isolation between the lineages and the species with environmental caste determination might prevent the genetic caste determination system to be swept away by gene flow.
Behavioral Ecology and Sociobiology | 2004
Sara Helms Cahan; Jennifer H. Fewell
Division of labor is a key factor in the ecological success of social groups. Recent work suggests that division of labor can emerge even without specific adaptations for task specialization and that it can appear in incipient social groups as a self-organizational property. We investigated experimentally how selection and self-organization may interact during the evolution of division of labor by examining task performance in groups of normally solitary versus normally social ant queens. We created social pairs of colony-founding queens from two populations of the ant Pogonomyrmex californicus, one in which queens are normally solitary and one in which queens form foundress groups, and observed their behavior during nest excavation. In both populations, one of the two queens usually performed most of the excavation, becoming the excavation specialist. We could predict which queen would become the specialist based on their relative propensities to perform the task in other contexts, consistent with a variance-based model of task specialization. The occurrence of specialization even when group members were not adapted to social life suggests that division of labor may well have been present in incipient queen groups. However, division of labor can result in cost skew among group members, and thus, paradoxically, within-group selection may constrain or even reduce specialization. Consistent with this effect, pairs of normally solitary queens were significantly more asymmetrical in their task performance than normally social pairs, in which both queens nearly always performed the behavior to some degree.
Molecular Ecology | 2015
Dietrich Gotzek; Heather J. Axen; Andrew V. Suarez; Sara Helms Cahan; DeWayne Shoemaker
Biological invasions are largely thought to be contemporary, having recently increased sharply in the wake of globalization. However, human commerce had already become global by the mid‐16th century when the Spanish connected the New World with Europe and Asia via their Manila galleon and West Indies trade routes. We use genetic data to trace the global invasion of one of the worlds most widespread and invasive pest ants, the tropical fire ant, Solenopsis geminata. Our results reveal a pattern of introduction of Old World populations that is highly consistent with historical trading routes suggesting that Spanish trade introduced the tropical fire ant to Asia in the 16th century. We identify southwestern Mexico as the most likely source for the invasive populations, which is consistent with the use of Acapulco as the major Spanish port on the Pacific Ocean. From there, the Spanish galleons brought silver to Manila, which served as a hub for trade with China. The genetic data document a corresponding spread of S. geminata from Mexico via Manila to Taiwan and from there, throughout the Old World. Our descriptions of the worldwide spread of S. geminata represent a rare documented case of a biological invasion of a highly invasive and globally distributed pest species due to the earliest stages of global commerce.
Molecular Ecology | 2007
Tanja Schwander; Laurent Keller; Sara Helms Cahan
Some populations of Pogonomyrmex harvester ants comprise pairs of highly differentiated lineages with queens mating at random with several males of their own and of the alternate lineage. These queens produce two types of diploid offspring, those fertilized by males of the queens’ lineage which develop into new queens and those fertilized by males of the other lineage which mostly develop into functionally sterile workers. This unusual mode of genetic caste determination has been found in 26 populations and a total of four lineage pairs (F1‐F2, G1‐G2, H1‐H2 and J1‐J2) have been described in these populations. Despite the fact that a few interlineage queens are produced, previous studies revealed that there is a complete lack of genetic introgression between lineages. Here we quantify the proportion of interlineage queens produced in each of the four lineage pairs and determine the fate of these queens. In the F1‐F2, G1‐G2 and H1‐H2 lineage pairs, interlineage queens were produced by a minority of colonies. These colonies exclusively produced interlineage queens and workers, suggesting that interlineage eggs can develop into queens in these three pairs of lineages in the absence of competition with pure‐lineage brood. An analysis of three key stages of the colony life cycle revealed that colonies headed by interlineage queens failed to grow sufficiently to produce reproductive individuals. In laboratory comparisons, interlineage queens produced fewer viable eggs, with the effect that they raised fewer workers and lost more weight per worker produced than pure‐lineage queens. In the J1‐J2 lineage pair, we did not find a single interlineage queen, raising the possibility that interlineage eggs have completely lost the ability to develop into queens in this lineage pair. Hence, two distinct mechanisms seem to account for the complete lack of between‐lineage gene flow in the F1‐F2, G1‐G2, H1‐H2 and J1‐J2 lineage pairs.
Ecology | 2006
Sara Helms Cahan; Glennis E. Julian; Tanja Schwander; Laurent Keller
Hybrid speciation occurs when combination of two interspecific genomes results in individuals that are of high fitness but reproductively incompatible with the parental species. Although hybrid speciation is a relatively common source of new species in plants, it appears to be a much rarer occurrence in animal taxa. Here we report on reproductive isolation and range overlap between the rough harvester ant Pogonomyrmex rugosus and two lineages with hybrid genotypes (H 1 and H2). Both lineages obligately interbreed and produce genetically distinct queen and worker offspring, a phenomenon referred to as genetic caste determination (GCD). Diploid offspring produced by gametes of the same lineage develop only into queens, whereas diploid offspring derived from gametes of distinct lineages develop into workers. We investigated small-scale patterns of gene flow between the parent and the two H lineages by sampling along an 80-km transect between a pure P. rugosus population and a two-lineage population. Microsatellite and mitochondrial markers both indicated virtually no gene flow between the parent species and either lineage even at sites where parental and H-lineage colonies co-occurred. The geographic ranges of the parental species and the two-lineage population were essentially parapatric, with a surprisingly narrow band of overlap and evidence of spatial structuring even at microgeographic scales within the transition zone. This suggests that ecological competition with the parent species plays a significant role in determining the evolutionary persistence and current distribution of the hybrid lineages and the genetic caste system.