Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara-Jane Dunn is active.

Publication


Featured researches published by Sara-Jane Dunn.


Neuron | 2013

Oligodendrocyte Dynamics in the Healthy Adult CNS: Evidence for Myelin Remodeling

Kaylene M. Young; Konstantina Psachoulia; Richa B. Tripathi; Sara-Jane Dunn; Lee Cossell; David Attwell; Koujiro Tohyama; William D. Richardson

Summary Oligodendrocyte precursors (OPs) continue to proliferate and generate myelinating oligodendrocytes (OLs) well into adulthood. It is not known whether adult-born OLs ensheath previously unmyelinated axons or remodel existing myelin. We quantified OP division and OL production in different regions of the adult mouse CNS including the 4-month-old optic nerve, in which practically all axons are already myelinated. Even there, all OPs were dividing and generating new OLs and myelin at a rate higher than can be explained by first-time myelination of naked axons. We conclude that adult-born OLs in the optic nerve are engaged in myelin remodeling, either replacing OLs that die in service or intercalating among existing myelin sheaths. The latter would predict that average internode length should decrease with age. Consistent with that, we found that adult-born OLs elaborated much shorter but many more internodes than OLs generated during early postnatal life.


Science | 2014

Defining an essential transcription factor program for naïve pluripotency

Sara-Jane Dunn; Graziano Martello; Boyan Yordanov; Stephen Emmott; Austin Smith

Predicting stem cell renewal or differentiation Predicting complex mammalian cell behavior is extremely challenging. Dunn et al. developed a computational model that predicts when embryonic stem cells will self-renew or differentiate. The model revealed an essential program governing pluripotency and identifies a minimal set of components and interactions that accurately predict responses to genetic perturbation. Science, this issue p. 1156 Iterative experimental and computational analysis reveals a simple molecular program for embryonic stem cell self-renewal. The gene regulatory circuitry through which pluripotent embryonic stem (ES) cells choose between self-renewal and differentiation appears vast and has yet to be distilled into an executive molecular program. We developed a data-constrained, computational approach to reduce complexity and to derive a set of functionally validated components and interaction combinations sufficient to explain observed ES cell behavior. This minimal set, the simplest version of which comprises only 16 interactions, 12 components, and three inputs, satisfies all prior specifications for self-renewal and furthermore predicts unknown and nonintuitive responses to compound genetic perturbations with an overall accuracy of 70%. We propose that propagation of ES cell identity is not determined by a vast interactome but rather can be explained by a relatively simple process of molecular computation.


PLOS Computational Biology | 2013

Chaste: An Open Source C++ Library for Computational Physiology and Biology

Gary R. Mirams; Christopher J. Arthurs; Miguel O. Bernabeu; Rafel Bordas; Jonathan Cooper; Alberto Corrias; Yohan Davit; Sara-Jane Dunn; Alexander G. Fletcher; Daniel G. Harvey; Megan E. Marsh; James M. Osborne; Pras Pathmanathan; Joe Pitt-Francis; James Southern; Nejib Zemzemi; David J. Gavaghan

Chaste — Cancer, Heart And Soft Tissue Environment — is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high-performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to ‘re-invent the wheel’ with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials.


PLOS ONE | 2013

Computational Models Reveal a Passive Mechanism for Cell Migration in the Crypt

Sara-Jane Dunn; Inke S. Näthke; James M. Osborne

Cell migration in the intestinal crypt is essential for the regular renewal of the epithelium, and the continued upward movement of cells is a key characteristic of healthy crypt dynamics. However, the driving force behind this migration is unknown. Possibilities include mitotic pressure, active movement driven by motility cues, or negative pressure arising from cell loss at the crypt collar. It is possible that a combination of factors together coordinate migration. Here, three different computational models are used to provide insight into the mechanisms that underpin cell movement in the crypt, by examining the consequence of eliminating cell division on cell movement. Computational simulations agree with existing experimental results, confirming that migration can continue in the absence of mitosis. Importantly, however, simulations allow us to infer mechanisms that are sufficient to generate cell movement, which is not possible through experimental observation alone. The results produced by the three models agree and suggest that cell loss due to apoptosis and extrusion at the crypt collar relieves cell compression below, allowing cells to expand and move upwards. This finding suggests that future experiments should focus on the role of apoptosis and cell extrusion in controlling cell migration in the crypt.


PLOS Computational Biology | 2012

A Two-Dimensional Model of the Colonic Crypt Accounting for the Role of the Basement Membrane and Pericryptal Fibroblast Sheath

Sara-Jane Dunn; Paul L. Appleton; Scott A. Nelson; Inke S. Näthke; David J. Gavaghan; James M. Osborne

The role of the basement membrane is vital in maintaining the integrity and structure of an epithelial layer, acting as both a mechanical support and forming the physical interface between epithelial cells and the surrounding connective tissue. The function of this membrane is explored here in the context of the epithelial monolayer that lines the colonic crypt, test-tube shaped invaginations that punctuate the lining of the intestine and coordinate a regular turnover of cells to replenish the epithelial layer every few days. To investigate the consequence of genetic mutations that perturb the system dynamics and can lead to colorectal cancer, it must be possible to track the emerging tissue level changes that arise in the crypt. To that end, a theoretical crypt model with a realistic, deformable geometry is required. A new discrete crypt model is presented, which focuses on the interaction between cell- and tissue-level behaviour, while incorporating key subcellular components. The model contains a novel description of the role of the surrounding tissue and musculature, based upon experimental observations of the tissue structure of the crypt, which are also reported. A two-dimensional (2D) cross-sectional geometry is considered, and the shape of the crypt is allowed to evolve and deform. Simulation results reveal how the shape of the crypt may contribute mechanically to the asymmetric division events typically associated with the stem cells at the base. The model predicts that epithelial cell migration may arise due to feedback between cell loss at the crypt collar and density-dependent cell division, an hypothesis which can be investigated in a wet lab. This work forms the basis for investigation of the deformation of the crypt structure that can occur due to proliferation of cells exhibiting mutant phenotypes, experiments that would not be possible in vivo or in vitro.


Journal of Theoretical Biology | 2012

Modelling the role of the basement membrane beneath a growing epithelial monolayer

Sara-Jane Dunn; Alexander G. Fletcher; S. Jonathan Chapman; David J. Gavaghan; James M. Osborne

The role of the basement membrane is vital in maintaining the integrity and structure of an epithelial layer, acting as both a mechanical support and forming the physical interface between epithelial cells and the surrounding connective tissue. The function of this membrane is explored here in the context of a growing epithelial monolayer, defined such that the epithelial cells divide and migrate along a deformable substrate. A discrete, off-lattice cell-centre modelling approach is undertaken, which permits definition of a basement membrane component, separating the epithelial cells from the tissue stroma whilst responding to forces from both that arise due to cell division, migration and apoptosis. This model is applicable to a range of biological epithelia, including the self-renewing interfollicular epidermis, the olfactory epithelium and the intestinal crypts of Lieberkühn, to inform response and recovery of such tissues following injury. Model simulations show that homeostasis of the growing monolayer can be achieved and sustained, and the necessary balance of interactive cell forces, cell migration and cell death is presented. This work is proposed as a novel extension to the body of discrete models of biological epithelia, permitting investigation of the growth and migration of epithelial cells in a deformable environment.


PLOS Computational Biology | 2014

Ten Simple Rules for Effective Computational Research

James M. Osborne; Miguel O. Bernabeu; Maria Bruna; Ben Calderhead; Jonathan Cooper; Neil Dalchau; Sara-Jane Dunn; Alexander G. Fletcher; Robin Freeman; Derek Groen; Bernhard Knapp; Greg J. McInerny; Gary R. Mirams; Joe Pitt-Francis; Biswa Sengupta; David W. Wright; Christian A. Yates; David J. Gavaghan; Stephen Emmott; Charlotte M. Deane

In order to attempt to understand the complexity inherent in nature, mathematical, statistical and computational techniques are increasingly being employed in the life sciences. In particular, the use and development of software tools is becoming vital for investigating scientific hypotheses, and a wide range of scientists are finding software development playing a more central role in their day-to-day research. In fields such as biology and ecology, there has been a noticeable trend towards the use of quantitative methods for both making sense of ever-increasing amounts of data [1] and building or selecting models [2]. As Research Fellows of the “2020 Science” project (http://www.2020science.net), funded jointly by the EPSRC (Engineering and Physical Sciences Research Council) and Microsoft Research, we have firsthand experience of the challenges associated with carrying out multidisciplinary computation-based science [3]–[5]. In this paper we offer a jargon-free guide to best practice when developing and using software for scientific research. While many guides to software development exist, they are often aimed at computer scientists [6] or concentrate on large open-source projects [7]; the present guide is aimed specifically at the vast majority of scientific researchers: those without formal training in computer science. We present our ten simple rules with the aim of enabling scientists to be more effective in undertaking research and therefore maximise the impact of this research within the scientific community. While these rules are described individually, collectively they form a single vision for how to approach the practical side of computational science. Our rules are presented in roughly the chronological order in which they should be undertaken, beginning with things that, as a computational scientist, you should do before you even think about writing any code. For each rule, guides on getting started, links to relevant tutorials, and further reading are provided in the supplementary material (Text S1).


npj Systems Biology and Applications | 2016

A Method to Identify and Analyze Biological Programs through Automated Reasoning

Boyan Yordanov; Sara-Jane Dunn; Hillel Kugler; Austin Smith; Graziano Martello; Stephen Emmott

Predictive biology is elusive because rigorous, data-constrained, mechanistic models of complex biological systems are difficult to derive and validate. Current approaches tend to construct and examine static interaction network models, which are descriptively rich, but often lack explanatory and predictive power, or dynamic models that can be simulated to reproduce known behavior. However, in such approaches implicit assumptions are introduced as typically only one mechanism is considered, and exhaustively investigating all scenarios is impractical using simulation. To address these limitations, we present a methodology based on automated formal reasoning, which permits the synthesis and analysis of the complete set of logical models consistent with experimental observations. We test hypotheses against all candidate models, and remove the need for simulation by characterizing and simultaneously analyzing all mechanistic explanations of observed behavior. Our methodology transforms knowledge of complex biological processes from sets of possible interactions and experimental observations to precise, predictive biological programs governing cell function.


Molecular Biology of the Cell | 2016

Combined changes in Wnt signaling response and contact inhibition induce altered proliferation in radiation-treated intestinal crypts

Sara-Jane Dunn; James M. Osborne; Paul L. Appleton; Inke S. Näthke

Wnt concentration gradients operate in many tissues. Modeling of proliferation in control and irradiated intestinal crypts shows that the Wnt concentrations that cells experience when they are born set their proliferative fate and cell cycle duration. The simulations also predict the initial proportion of cells damaged by tumor-promoting radiation.


bioRxiv | 2018

A common molecular logic determines embryonic stem cell self-renewal and reprogramming

Sara-Jane Dunn; Meng Amy Li; Elena Carbognin; Austin Smith; Graziano Martello

Reconfiguration of gene regulatory networks is required to instate new cell identities during differentiation and reprogramming. Here we combined automated formal reasoning with experimentation to expose the logic of network resetting for induction of naïve pluripotency. We found that a Boolean network architecture defined for self-renewal accurately predicted reprogramming potency of single or combinations of factors. Deterministic gene activation trajectories were computationally identified and experimentally substantiated at single cell resolution. A counterintuitive observation that Klf2 is required during resetting while dispensable for self-renewal is explained by the contingency of factor availability. We tested 132 predictions formulated by the dynamic network, finding a predictive accuracy of 79.6%, and further show that this network accurately explains experimental observations of somatic cell reprogramming. We conclude that a common and deterministic program of gene regulation governs both self-renewal and induction of pluripotency. The methodology could be applied to delineate dynamic networks underlying other cell fate transitions.

Collaboration


Dive into the Sara-Jane Dunn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Austin Smith

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Gary R. Mirams

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge