Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara K. Lindén is active.

Publication


Featured researches published by Sara K. Lindén.


Nature Reviews Microbiology | 2011

Mucin dynamics and enteric pathogens.

Michael A. McGuckin; Sara K. Lindén; Philip Sutton; Timothy H. Florin

The extracellular secreted mucus and the cell surface glycocalyx prevent infection by the vast numbers of microorganisms that live in the healthy gut. Mucin glycoproteins are the major component of these barriers. In this Review, we describe the components of the secreted and cell surface mucosal barriers and the evidence that they form an effective barricade against potential pathogens. However, successful enteric pathogens have evolved strategies to circumvent these barriers. We discuss the interactions between enteric pathogens and mucins, and the mechanisms that these pathogens use to disrupt and avoid mucosal barriers. In addition, we describe dynamic alterations in the mucin barrier that are driven by host innate and adaptive immune responses to infection.


The American Journal of Gastroenterology | 2010

Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria.

Chin Wen Png; Sara K. Lindén; Kristen Gilshenan; Erwin G. Zoetendal; Chris McSweeney; Lindsay I. Sly; Michael A. McGuckin; Timothy H. Florin

OBJECTIVES:Mucosa-associated bacteria are increased in inflammatory bowel disease (IBD), which suggests the possibility of an increased source of digestible endogenous mucus substrate. We hypothesized that mucolytic bacteria are increased in IBD, providing increased substrate to sustain nonmucolytic mucosa-associated bacteria.METHODS:Mucolytic bacteria were characterized by the ability to degrade human secretory mucin (MUC2) in pure and mixed anaerobic cultures. Real-time PCR was used to enumerate mucosa-associated mucolytic bacteria in 46 IBD and 20 control patients. Bacterial mucolytic activity was tested in vitro using purified human MUC2.RESULTS:We confirm increased total mucosa-associated bacteria 16S rRNA gene in macroscopically and histologically normal intestinal epithelium of both Crohns disease (CD) (mean 1.9-fold) and ulcerative colitis (UC) (mean 1.3-fold). We found a disproportionate increase in some mucolytic bacteria. Mean Ruminococcus gnavus were increased >4-fold and Ruminococcus torques ∼100-fold in macroscopically and histologically normal intestinal epithelium of both CD and UC. The most abundantly detected mucolytic bacterium in controls, Akkermansia muciniphila, was reduced many fold in CD and in UC. Coculture of A. muciniphila with MUC2 as the sole carbon source led to reduction in its abundance while it augmented growth of other bacteria.CONCLUSIONS:Mucolytic bacteria are present in healthy humans, where they are an integral part of the mucosa-associated bacterial consortium. The disproportionate increase in R. gnavus and R. torques could explain increased total mucosa-associated bacteria in IBD.


PLOS Pathogens | 2009

MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy.

Sara K. Lindén; Yong H. Sheng; Alison L. Every; Kim M. Miles; Emma C. Skoog; Timothy H. Florin; Philip Sutton; Michael A. McGuckin

The bacterium Helicobacter pylori can cause peptic ulcer disease, gastric adenocarcinoma and MALT lymphoma. The cell-surface mucin MUC1 is a large glycoprotein which is highly expressed on the mucosal surface and limits the density of H. pylori in a murine infection model. We now demonstrate that by using the BabA and SabA adhesins, H. pylori bind MUC1 isolated from human gastric cells and MUC1 shed into gastric juice. Both H. pylori carrying these adhesins, and beads coated with MUC1 antibodies, induced shedding of MUC1 from MKN7 human gastric epithelial cells, and shed MUC1 was found bound to H. pylori. Shedding of MUC1 from non-infected cells was not mediated by the known MUC1 sheddases ADAM17 and MMP-14. However, knockdown of MMP-14 partially affected MUC1 release early in infection, whereas ADAM17 had no effect. Thus, it is likely that shedding is mediated both by proteases and by disassociation of the non-covalent interaction between the α- and β-subunits. H. pylori bound more readily to MUC1 depleted cells even when the bacteria lacked the BabA and SabA adhesins, showing that MUC1 inhibits attachment even when bacteria cannot bind to the mucin. Bacteria lacking both the BabA and SabA adhesins caused less apoptosis in MKN7 cells than wild-type bacteria, having a greater effect than deletion of the CagA pathogenicity gene. Deficiency of MUC1/Muc1 resulted in increased epithelial cell apoptosis, both in MKN7 cells in vitro, and in H. pylori infected mice. Thus, MUC1 protects the epithelium from non-MUC1 binding bacteria by inhibiting adhesion to the cell surface by steric hindrance, and from MUC1-binding bacteria by acting as a releasable decoy.


PLOS ONE | 2008

Mucin Dynamics in Intestinal Bacterial Infection

Sara K. Lindén; Timothy H. Florin; Michael A. McGuckin

Background Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract. Methodology/Principal Findings Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17) in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05). Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon. Conclusion Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.


Helicobacter | 2008

Four modes of adhesion are used during Helicobacter pylori binding to human mucins in the oral and gastric niches.

Sara K. Lindén; Claes Wickström; Gert Lindell; Kristen Gilshenan; Ingemar Carlstedt

Background:  Helicobacter pylori causes peptic ulcer disease and gastric cancer, and the oral cavity is likely to serve as a reservoir for this pathogen. We investigated the binding of H. pylori to the mucins covering the mucosal surfaces in the niches along the oral to gastric infection route and during gastric disease and modeled the outcome of these interactions.


Gut | 2011

The MUC13 cell-surface mucin protects against intestinal inflammation by inhibiting epithelial cell apoptosis

Yong H. Sheng; Rohan Lourie; Sara K. Lindén; Penny L. Jeffery; Deborah Roche; Thu V. Tran; Chin W Png; Nigel J. Waterhouse; Philip Sutton; Timothy H. Florin; Michael A. McGuckin

Background and Aims The MUC13 transmembrane mucin is highly and constitutively expressed in the small and large intestine. Although MUC13 polymorphisms have been associated with human inflammatory bowel diseases and susceptibility to Escherichia coli infection in pigs, the biological functions of MUC13 are unknown. This study aimed to explore whether MUC13 modulates intestinal inflammation. Methods Muc13−/− mice were generated, phenotyped and challenged with the colitis-inducing agent, dextran sodium sulphate (DSS). Colitis was assessed by clinical symptoms and intestinal histopathology. Intestinal epithelial cell apoptosis and proliferation, macrophage infiltration and cytokine production were also quantified. Apoptosis of human LS513 intestinal epithelial cells in response to apoptotic agents, including DSS, was also measured, following knockdown of MUC13 with siRNA. Results Muc13−/− mice were viable, fertile and developed normally, with no spontaneous intestinal pathology except mild focal neutrophilic inflammation in the small and large intestines of old mice. In response to DSS challenge, Muc13−/− mice developed more severe acute colitis, as reflected by increased weight loss, rectal bleeding, diarrhoea and histological colitis scores compared with wild-type mice. Increased numbers of F4/80+ macrophages in inflamed mucosa of Muc13−/− mice were accompanied by increased expression of intestinal IL-1β and TNFα mRNA. Muc13−/− mice had significantly increased intestinal epithelial cell apoptosis within 3 days of DSS exposure. LS513 cells were more susceptible to DSS, actinomycin-D, ultraviolet irradiation and TRAIL-induced apoptosis when MUC13 was knocked down by siRNA. Conclusions These novel findings indicate a protective role for Muc13 in the colonic epithelium by inhibiting toxin-induced apoptosis and have important implications for intestinal infections, inflammatory diseases and the development of intestinal cancer.


PLOS ONE | 2012

Human gastric mucins differently regulate Helicobacter pylori proliferation, gene expression and interactions with host cells.

Emma C. Skoog; Åsa Sjöling; Nazanin Navabi; Jan Holgersson; Samuel Lundin; Sara K. Lindén

Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA) appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host.


Methods in Enzymology | 2006

Helicobacter pylori adhesion to carbohydrates.

Marina Aspholm; Awdhesh Kalia; Stefan Ruhl; Staffan Schedin; Anna Arnqvist; Sara K. Lindén; Rolf Sjöström; Markus Gerhard; Cristina Semino-Mora; Andre Dubois; Magnus Unemo; Dan Danielsson; Susann Teneberg; Woo Kon Lee; Douglas E. Berg; Thomas Borén

Adherence of bacterial pathogens to host tissues contributes to colonization and virulence and typically involves specific interactions between bacterial proteins called adhesins and cognate oligosaccharide (glycan) or protein motifs in the host that are used as receptors. A given pathogen may have multiple adhesins, each specific for a different set of receptors and, potentially, with different roles in infection and disease. This chapter provides strategies for identifying and analyzing host glycan receptors and the bacterial adhesins that exploit them as receptors, with particular reference to adherence of the gastric pathogen Helicobacter pylori.


PLOS ONE | 2013

Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation.

Nazanin Navabi; Michael A. McGuckin; Sara K. Lindén

Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface.


Helicobacter | 2010

Role of mucin Lewis status in resistance to Helicobacter pylori infection in pediatric patients.

Sara K. Lindén; Cristina Semino-Mora; Hui Liu; James Rick; Andre Dubois

Background:  Helicobacter pylori causes gastritis, peptic ulcer and is a risk factor for adenocarcinoma and lymphoma of the stomach. Gastric mucins, carrying highly diverse carbohydrate structures, present functional binding sites for H. pylori and may play a role in pathogenesis. However, little information is available regarding gastric mucin in children with and without stomach diseases.

Collaboration


Dive into the Sara K. Lindén's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma C. Skoog

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Médea Padra

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nazanin Navabi

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge