Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara K. Quinney is active.

Publication


Featured researches published by Sara K. Quinney.


Pediatric Blood & Cancer | 2011

Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia

Akinbode Egbelakin; Michael J. Ferguson; Emily A. MacGill; Amalia S. Lehmann; Ariel R. Topletz; Sara K. Quinney; Lang Li; Stephen D. Hall; Jamie L. Renbarger

This study evaluates the relationship between cytochrome P450 (CYP) 3A5 genotype and vincristine‐induced peripheral neuropathy (VIPN) in children with precursor B cell acute lymphoblastic leukemia (preB ALL). We have shown in vitro that vincristine is metabolized significantly more efficiently by CYP3A5 than by CYP3A4. We also found that vincristine neurotoxicity is less common in African‐Americans (70% express CYP3A5) than in Caucasians. We test the hypothesis that CYP3A5 expressers experience less vincristine neuropathy than do CYP3A5 non‐expressers.


Drug Metabolism and Disposition | 2009

Semiphysiologically Based Pharmacokinetic Models for the Inhibition of Midazolam Clearance by Diltiazem and Its Major Metabolite

Xin Zhang; Sara K. Quinney; J. Christopher Gorski; David R. Jones; Stephen D. Hall

Prediction of the extent and time course of drug-drug interactions (DDIs) between the mechanism-based inhibitor diltiazem (DTZ) and the CYP3A4 substrate midazolam (MDZ) is confounded by time- and concentration-dependent clearance of the inhibitor. Semiphysiologically based pharmacokinetic (PBPK) models were developed for DTZ and MDZ with the major metabolite of DTZ, N-desmethyldiltiazem (nd-DTZ), incorporated in the DTZ model. Enzyme kinetic parameters (kinact and KI) for DTZ and nd-DTZ were estimated in vitro and used to model the time course of changes in the amount of CYP3A4 in the liver and gut wall, which in turn, determined the nonlinear elimination of MDZ and DTZ, and the corresponding DDI. The robustness of the model prediction was assessed by comparing the results of the prediction to published DTZ pharmacokinetic and DTZ/MDZ interaction data. A clinical study was conducted to further validate the predicted increase of MDZ exposure after DTZ treatment. The model predicted the nonlinear disposition of DTZ after single and multiple oral doses. The clinical study showed that DTZ treatment resulted in 4.1- and 1.6-fold increases in MDZ exposure after oral and intravenous MDZ administration, respectively, suggesting that the DDI in the gut wall plays an important role in the DTZ/MDZ interaction. The semi-PBPK model incorporating the DDI at the gut wall, and the effect of nd-DTZ successfully predicted the nonlinear disposition of DTZ and its interaction with MDZ. Moreover, model simulation suggested that both DTZ and nd-DTZ contributed to the overall inhibitory effect after DTZ administration, and the values of the in vitro estimated inhibition parameters and CYP3A4 turnover rate are critical for the prediction.


Drug Metabolism and Disposition | 2010

Physiologically Based Pharmacokinetic Model of Mechanism-Based Inhibition of CYP3A by Clarithromycin

Sara K. Quinney; Xin Zhang; Aroonrut Lucksiri; J. Christopher Gorski; Lang Li; Stephen D. Hall

The prediction of clinical drug-drug interactions (DDIs) due to mechanism-based inhibitors of CYP3A is complicated when the inhibitor itself is metabolized by CYP3Aas in the case of clarithromycin. Previous attempts to predict the effects of clarithromycin on CYP3A substrates, e.g., midazolam, failed to account for nonlinear metabolism of clarithromycin. A semiphysiologically based pharmacokinetic model was developed for clarithromycin and midazolam metabolism, incorporating hepatic and intestinal metabolism by CYP3A and non-CYP3A mechanisms. CYP3A inactivation by clarithromycin occurred at both sites. KI and kinact values for clarithromycin obtained from in vitro sources were unable to accurately predict the clinical effect of clarithromycin on CYP3A activity. An iterative approach determined the optimum values to predict in vivo effects of clarithromycin on midazolam to be 5.3 μM for Ki and 0.4 and 4 h−1 for kinact in the liver and intestines, respectively. The incorporation of CYP3A-dependent metabolism of clarithromycin enabled prediction of its nonlinear pharmacokinetics. The predicted 2.6-fold change in intravenous midazolam area under the plasma concentration-time curve (AUC) after 500 mg of clarithromycin orally twice daily was consistent with clinical observations. Although the mean predicted 5.3-fold change in the AUC of oral midazolam was lower than mean observed values, it was within the range of observations. Intestinal CYP3A activity was less sensitive to changes in KI, kinact, and CYP3A half-life than hepatic CYP3A. This semiphysiologically based pharmacokinetic model incorporating CYP3A inactivation in the intestine and liver accurately predicts the nonlinear pharmacokinetics of clarithromycin and the DDI observed between clarithromycin and midazolam. Furthermore, this model framework can be applied to other mechanism-based inhibitors.


American Journal of Nephrology | 2014

Predicting the Glomerular Filtration Rate in Bariatric Surgery Patients

Allon N. Friedman; Sharon M. Moe; William F. Fadel; Margaret Inman; Samer G. Mattar; Zak K. Shihabi; Sara K. Quinney

Background/Aims: Identifying the best method to estimate the glomerular filtration rate (GFR) in bariatric surgery patients has important implications for the clinical care of obese patients and research into the impact of obesity and weight reduction on kidney health. We therefore performed such an analysis in patients before and after surgical weight loss. Methods: Fasting measured GFR (mGFR) by plasma iohexol clearance before and after bariatric surgery was obtained in 36 severely obese individuals. Estimated GFR was calculated using the Modification of Diet in Renal Disease equation, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation using serum creatinine only, the CKD-EPI equation using serum cystatin C only and a recently derived equation that uses both serum creatinine and cystatin C (CKD-EPIcreat-cystC) and then compared to mGFR. Results: Participants were primarily middle-aged white females with a mean baseline body mass index of 46 ± 9, serum creatinine of 0.81 ± 0.24 mg/dl and mGFR of 117 ± 40 ml/min. mGFR had a stronger linear relationship with inverse cystatin C before (r = 0.28, p = 0.09) and after (r = 0.38, p = 0.02) surgery compared to the inverse of creatinine (before: r = 0.26, p = 0.13; after: r = 0.11, p = 0.51). mGFR fell by 17 ± 35 ml/min (p = 0.007) following surgery. The CKD-EPIcreat-cystC was unquestionably the best overall performing estimating equation before and after surgery, revealing very little bias and a capacity to estimate mGFR within 30% of its true value over 80% of the time. This was true whether or not mGFR was indexed for body surface area. Conclusions: In severely obese bariatric surgery patients with normal kidney function, cystatin C is more strongly associated with mGFR than is serum creatinine. The CKD-EPIcreat-cystC equation best predicted mGFR both before and after surgery.


Nephron Clinical Practice | 2010

Measuring the glomerular filtration rate in obese individuals without overt kidney disease.

Allon N. Friedman; Matthew Strother; Sara K. Quinney; Stephen D. Hall; Susan M. Perkins; Edward J. Brizendine; Margaret Inman; Gerardo Gomez; Zak K. Shihabi; Sharon M. Moe; Lang Li

Background: Identifying methods to accurately measure the glomerular filtration rate (GFR) in obese individuals without kidney overt kidney disease is necessary to understanding the pathophysiology and natural history of obesity-related kidney disease. Methods: Using a cross-sectional design, iohexol clearance and disposition was measured, an optimal sampling schedule was identified, and the reliability of GFR-estimating methods was described in 29 obese individuals with normal serum creatinine levels. Iohexol disposition was measured using population pharmacokinetics. The agreement with GFR-estimating equations was assessed by intraclass coefficients. Results: Mean age was 44 ± 10 years, body mass index 45 ± 10, creatinine 0.7 ± 0.2 mg/dl (62 ± 18 µmol/l) , and cystatin C 0.83 ± 0.18 mg/dl (8.3 ± 1.8 mg/l). Iohexol disposition fit a two-compartment model and 5 sampling windows were identified over a 4-hour period to optimize model accuracy and minimize blood draws. Precision was not compromised with this sampling design. Neither creatinine nor cystatin C were linearly correlated with the measured GFR though cystatin C was independent of body composition. Agreement was fair to poor between the measured GFR and GFR-estimating equations. Conclusion: This study offers a rigorous method to study obesity-related kidney disease and improve upon suboptimal GFR-estimating methods.


BMC Systems Biology | 2010

Non-compartment model to compartment model pharmacokinetics transformation meta-analysis – a multivariate nonlinear mixed model

Zhiping Wang; Seongho Kim; Sara K. Quinney; Jihao Zhou; Lang Li

BackgroundTo fulfill the model based drug development, the very first step is usually a model establishment from published literatures. Pharmacokinetics model is the central piece of model based drug development. This paper proposed an important approach to transform published non-compartment model pharmacokinetics (PK) parameters into compartment model PK parameters. This meta-analysis was performed with a multivariate nonlinear mixed model. A conditional first-order linearization approach was developed for statistical estimation and inference.ResultsUsing MDZ as an example, we showed that this approach successfully transformed 6 non-compartment model PK parameters from 10 publications into 5 compartment model PK parameters. In simulation studies, we showed that this multivariate nonlinear mixed model had little relative bias (<1%) in estimating compartment model PK parameters if all non-compartment PK parameters were reported in every study. If there missing non-compartment PK parameters existed in some published literatures, the relative bias of compartment model PK parameter was still small (<3%). The 95% coverage probabilities of these PK parameter estimates were above 85%.ConclusionsThis non-compartment model PK parameter transformation into compartment model meta-analysis approach possesses valid statistical inference. It can be routinely used for model based drug development.


American Journal of Perinatology | 2012

Nifedipine pharmacokinetics are influenced by CYP3A5 genotype when used as a preterm labor tocolytic

David M. Haas; Sara K. Quinney; Jayanti M. Clay; Jamie L. Renbarger; Mary F. Hebert; Shannon Clark; Jason G. Umans; Steve N. Caritis

OBJECTIVE To characterize the pharmacokinetics and pharmacogenetics of nifedipine in pregnancy. STUDY DESIGN Pregnant women receiving oral nifedipine underwent steady-state pharmacokinetic testing over one dosing interval. DNA was obtained and genotyped for cytochrome P450 (CYP) 3A5 and CYP3A4*1B. Nifedipine and oxidized nifedipine concentrations were measured in plasma, and pharmacokinetic parameters were compared between those women who expressed a CYP3A5*1 allele and those who expressed only variant CYP3A5 alleles (*3,*6, or *7). RESULTS Fourteen women had complete data to analyze. Four women (29%) expressed variant CYP3A5; three of these women were also CYP3A4*1B allele carriers. The mean half-life of nifedipine was 1.68 ± 1.56 hours. The area under the curve from 0 to 6 hours for the women receiving nifedipine every 6 hours was 207 ± 138 µg·h /L. Oral clearance was different between high expressers and low expressers (232.0 ± 37.8 µg/mL versus 85.6 ± 45.0 µg/mL, respectively; p = 0.007). CONCLUSION CYP3A5 genotype influences the oral clearance of nifedipine in pregnant women.


Drug Metabolism and Disposition | 2013

CYP2B6 Pharmacogenetics–Based In Vitro–In Vivo Extrapolation of Efavirenz Clearance by Physiologically Based Pharmacokinetic Modeling

Cong Xu; Sara K. Quinney; Yingying Guo; Stephen D. Hall; Lang Li; Zeruesenay Desta

Efavirenz is mainly cleared by CYP2B6. The CYP2B6*6 allele is associated with lower efavirenz clearance. Efavirenz clearance was predictable using in vitro data for carriers of the CYP2B6*1/*1 genotype, but the prediction in carriers of the CYP2B6*6 allele was poor. To test the hypothesis that incorporation of mechanism of reduced efavirenz metabolism by the CYP2B6*6 allele can predict the genetic effect on efavirenz pharmacokinetics, in vitro–in vivo extrapolation of efavirenz clearance was performed by physiologically based pharmacokinetic modeling (Simcyp Simulator; Simcyp Ltd., Sheffield, UK) using data obtained from expressed CYP2B6.1 and CYP2B6.6 as well as human liver microsomes (HLMs) with CYP2B6*1/*1, *1/*6, and *6/*6 genotypes. Simulated pharmacokinetics of a single 600-mg oral dose of efavirenz for individuals with each genotype was compared with data observed in healthy subjects genotyped for the CYP2B6*6 allele (n = 20). Efavirenz clearance for carriers of the CYP2B6*1/*1 genotype was predicted reasonably well using HLM data, but the clearance in carriers of the CYP2B6*6 allele was underpredicted using both expressed and HLM systems. Improved prediction of efavirenz clearance was obtained from expressed CYP2B6 after recalculating intersystem extrapolation factors for CYP2B6.1 and CYP2B6.6 based on in vitro intrinsic clearance of bupropion 4-hydroxylation. These findings suggest that genetic effect on both CYP2B6 protein expression and catalytic efficiency needs to be taken into account for the prediction of pharmacokinetics in individuals carrying the CYP2B6*6/*6 genotype. Expressed CYP2B6 proteins may be a reliable in vitro system to predict effect of the CYP2B6*6 allele on the metabolism of CYP2B6 substrates.


CPT: Pharmacometrics & Systems Pharmacology | 2012

A Semi-Mechanistic Metabolism Model of CYP3A Substrates in Pregnancy: Predicting Changes in Midazolam and Nifedipine Pharmacokinetics

Sara K. Quinney; An Mohamed; Mary F. Hebert; David M. Haas; Shannon Clark; Jason G. Umans; S.N. Caritis; Lang Li

Physiological changes in pregnancy, including changes in body composition and metabolic enzyme activity, can alter drug pharmacokinetics. A semi‐mechanistic metabolism model was developed to describe the pharmacokinetics of two cytochrome P450 3A (CYP3A) substrates, midazolam and nifedipine, in obstetrics patients. The model parameters were optimized to fit the data of oral midazolam pharmacokinetics in pregnant women, by increasing CYP3A‐induced hepatic metabolism 1.6‐fold in the model with no change in gut wall metabolism. Fetal metabolism had a negligible effect on maternal plasma drug concentrations. Validation of the model was performed by applying changes in volume of distribution and metabolism, consistent with those observed for midazolam, to the pharmacokinetics parameters of immediate‐release nifedipine in healthy volunteers. The predicted steady‐state areas under the concentration–time curve (AUCs) for nifedipine were within 15% of the data observed in pregnant women undergoing treatment for preterm labor. This model predicts the pharmacokinetics of two CYP3A substrates in pregnancy, and may be applicable to other CYP3A substrates as well.


Drug Metabolism and Disposition | 2010

Inhibition of CYP3A by erythromycin: in vitro-in vivo correlation in rats.

Xin Zhang; Raymond E. Galinsky; Robert E. Kimura; Sara K. Quinney; David R. Jones; Stephen D. Hall

The prediction of in vivo drug-drug interactions from in vitro enzyme inhibition parameters remains challenging, particularly when time-dependent inhibition occurs. This study was designed to examine the accuracy of in vitro-derived parameters for the prediction of inhibition of CYP3A by erythromycin (ERY). Chronically cannulated rats were used to estimate the reduction in in vivo and in vitro intrinsic clearance (CLint) of midazolam (MDZ) after single and multiple doses of ERY; in vitro recovery of CLint was determined at 1, 2, 3, and 4 days after discontinuation of ERY. Enzyme inhibition parameters (kinact, KI, and Ki) of ERY were estimated in vitro by using untreated rat liver microsomes. In vivo enzyme kinetic analysis indicated that single and multiple doses of ERY (150 mg/kg i.v. infusion over 4 h) reduced MDZ CLint by reversible and irreversible mechanisms, respectively. CYP3A inactivation after multiple doses of ERY treatment reflected metabolic intermediate complex formation without a significant change in hepatic CYP3A2 mRNA. A physiologically based pharmacokinetic model of the interaction between ERY and MDZ predicted a 2.6-fold decrease in CYP3A activity after repeated ERY treatment using in vitro-estimated enzyme inhibition parameters and in vivo degradation half-life of the enzyme (20 ± 6 h). The observed -fold decreases were 2.3-fold and 2.1-fold for the in vitro-estimated CYP3A activity and the in vivo CLint, respectively. This study demonstrates that in vivo DDIs are predictable from in vitro data when the appropriate model and parameter estimates are available.

Collaboration


Dive into the Sara K. Quinney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge