Sara Landgren
University of Gothenburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sara Landgren.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Elisabet Jerlhag; Emil Egecioglu; Sara Landgren; Nicolas Salomé; Markus Heilig; Diederik Moechars; Rakesh Datta; Daniel Perrissoud; Suzanne L. Dickson; Jörgen A. Engel
The stomach-derived hormone ghrelin interacts with key CNS circuits regulating energy balance and body weight. Here we provide evidence that the central ghrelin signaling system is required for alcohol reward. Central ghrelin administration (to brain ventricles or to tegmental areas involved in reward) increased alcohol intake in a 2-bottle (alcohol/water) free choice limited access paradigm in mice. By contrast, central or peripheral administration of ghrelin receptor (GHS-R1A) antagonists suppressed alcohol intake in this model. Alcohol-induced locomotor stimulation, accumbal dopamine release and conditioned place preference were abolished in models of suppressed central ghrelin signaling: GHS-R1A knockout mice and mice treated with 2 different GHS-R1A antagonists. Thus, central ghrelin signaling, via GHS-R1A, not only stimulates the reward system, but is also required for stimulation of that system by alcohol. Our data suggest that central ghrelin signaling constitutes a potential target for treatment of alcohol-related disorders.
BMC Medical Genetics | 2010
Malin von Otter; Sara Landgren; Staffan Nilsson; Dragana Celojevic; Petra Bergström; Anna Håkansson; Hans Nissbrandt; Marek Drozdzik; Monika Białecka; Mateusz Kurzawski; Kaj Blennow; Michael Nilsson; Ola Hammarsten; Henrik Zetterberg
BackgroundOxidative stress is heavily implicated in the pathogenic process of Parkinsons disease. Varying capacity to detoxify radical oxygen species through induction of phase II antioxidant enzymes in substantia nigra may influence disease risk. Here, we hypothesize that variation in NFE2L2 and KEAP1, the genes encoding the two major regulators of the phase II response, may affect the risk of Parkinsons disease.MethodsThe study included a Swedish discovery case-control material (165 cases and 190 controls) and a Polish replication case-control material (192 cases and 192 controls). Eight tag single nucleotide polymorphisms representing the variation in NFE2L2 and three representing the variation in KEAP1 were chosen using HapMap data and were genotyped using TaqMan Allelic Discrimination.ResultsWe identified a protective NFE2L2 haplotype in both of our European case-control materials. Each haplotype allele was associated with five years later age at onset of the disease (p = 0.001) in the Swedish material, and decreased risk of PD (p = 2 × 10-6), with an odds ratio of 0.4 (95% CI 0.3-0.6) for heterozygous and 0.2 (95% CI 0.1-0.4) for homozygous carriers, in the Polish material. The identified haplotype includes a functional promoter haplotype previously associated with high transcriptional activity. Genetic variation in KEAP1 did not show any associations.ConclusionThese data suggest that variation in NFE2L2 modifies the Parkinsons disease process and provide another link between oxidative stress and neurodegeneration.
Addiction Biology | 2012
Sara Landgren; Jeffrey A. Simms; Petri Hyytiä; Jörgen A. Engel; Selena E. Bartlett; Elisabet Jerlhag
The mechanisms involved in alcohol use disorders are complex. It has been shown that ghrelin is an important signal for the control of body weight homeostasis, preferably by interacting with hypothalamic circuits, as well as for drug reward by activating the mesolimbic dopamine system. The ghrelin receptor (GHS‐R1A) has been shown to be required for alcohol‐induced reward. Additionally, ghrelin increases and GHR‐R1A antagonists reduce moderate alcohol consumption in mice, and a single nucleotide polymorphism in the GHS‐R1A gene has been associated with high alcohol consumption in humans. However, the role of central ghrelin signaling in high alcohol consumption is not known. Therefore, the role of GHS‐R1A in operant self‐administration of alcohol in rats as well as for high alcohol consumption in Long‐Evans rats and in alcohol preferring [Alko alcohol (AA)] rats was studied here. In the present study, the GHS‐R1A antagonist, JMV2959, was found to reduce the operant self‐administration of alcohol in rats and to decrease high alcohol intake in Long‐Evans rats as well as in AA rats. These results suggest that the ghrelin receptor signaling system, specifically GHS‐R1A, is required for operant self‐administration of alcohol and for high alcohol intake in rats. Therefore, the GHS‐R1A may be a therapeutic target for treatment of addictive behaviors, such as alcohol dependence.
Alcohol | 2011
Elisabeth Jerlhag; Sara Landgren; Emil Egecioglu; Suzanne L. Dickson; Jörgen A. Engel
Ghrelin, the first endogenous ligand for the type 1A growth hormone secretagogue receptor (GHS-R1A), plays a role in energy balance, feeding behavior, and reward. Previously, we showed that pharmacologic and genetic suppression of the GHS-R1A attenuates the alcohol-induced stimulation, accumbal dopamine release, and conditioned place preference as well as alcohol consumption in mice, implying that the GHS-R1A is required for alcohol reward. The present study further elucidates the role of ghrelin for alcohol-induced dopamine release in nucleus accumbens and locomotor stimulation by means of ghrelin knockout mice. We found that the ability of alcohol to increase accumbal dopamine release in wild-type mice is not observed in ghrelin knockout mice. Furthermore, alcohol induced a locomotor stimulation in the wild-type mice and ghrelin knockout mice; however, the locomotor stimulation in homozygote mice was significantly lower than in the wild-type mice. The present series of experiments suggest that endogenous ghrelin may be required for the ability of alcohol to activate the mesolimbic dopamine system.
Alcoholism: Clinical and Experimental Research | 2008
Sara Landgren; Elisabet Jerlhag; Henrik Zetterberg; Arturo Gonzalez-Quintela; Joaquin Campos; Ulrica Olofsson; Staffan Nilsson; Kaj Blennow; Jörgen A. Engel
BACKGROUND Ghrelin, an orexigenic peptide, acts on growth hormone secretagogue receptors (GHS-R1A), expressed in the hypothalamus as well as in important reward nodes such as the ventral tegmental area. Interestingly, ghrelin has been found to activate an important part of the reward systems, i.e., the cholinergic-dopaminergic reward link. Additionally, the rewarding and neurochemical properties of alcohol are, at least in part, mediated via this reward link. There is comorbidity between alcohol dependence and eating disorders. Thus, plasma levels of ghrelin are altered in patients with addictive behaviors such as alcohol and nicotine dependence and in binge eating disorder. This overlap prompted as to investigate the pro-ghrelin and GHS-R1A genes in a haplotype analysis of heavy alcohol-using individuals. METHODS A total of 417 Spanish individuals (abstainers, moderate, and heavy alcohol drinkers) were investigated in a haplotype analysis of the pro-ghrelin and GHS-R1A genes. Tag SNPs were chosen using HapMap data and the Tagger and Haploview softwares. These SNPs were then genotyped using TaqMan Allelic Discrimination. RESULTS SNP rs2232165 of the GHS-R1A gene was associated with heavy alcohol consumption and SNP rs2948694 of the same gene as well as haplotypes of both the pro-ghrelin and the GHS-R1A genes were associated with body mass in heavy alcohol consuming individuals. CONCLUSIONS The present findings are the first to disclose an association between the pro-ghrelin and GHS-R1A genes and heavy alcohol use, further strengthening the role of the ghrelin system in addictive behaviors and brain reward.
PLOS ONE | 2011
Sara Landgren; Jeffrey A. Simms; Dag S. Thelle; Elisabeth Strandhagen; Selena E. Bartlett; Jörgen A. Engel; Elisabet Jerlhag
The gastric-derived orexigenic peptide ghrelin affects brain circuits involved in energy balance as well as in reward. Indeed, ghrelin activates an important reward circuit involved in natural- as well as drug-induced reward, the cholinergic-dopaminergic reward link. It has been hypothesized that there is a common reward mechanism for alcohol and sweet substances in both animals and humans. Alcohol dependent individuals have higher craving for sweets than do healthy controls and the hedonic response to sweet taste may, at least in part, depend on genetic factors. Rat selectively bred for high sucrose intake have higher alcohol consumption than non-sucrose preferring rats and vice versa. In the present study a group of alcohol-consuming individuals selected from a population cohort was investigated for genetic variants of the ghrelin signalling system in relation to both their alcohol and sucrose consumption. Moreover, the effects of GHS-R1A antagonism on voluntary sucrose- intake and operant self-administration, as well as saccharin intake were investigated in preclinical studies using rodents. The effects of peripheral grelin administration on sucrose intake were also examined. Here we found associations with the ghrelin gene haplotypes and increased sucrose consumption, and a trend for the same association was seen in the high alcohol consumers. The preclinical data show that a GHS-R1A antagonist reduces the intake and self-administration of sucrose in rats as well as saccharin intake in mice. Further, ghrelin increases the intake of sucrose in rats. Collectively, our data provide a clear indication that the GHS-R1A antagonists reduces and ghrelin increases the intake of rewarding substances and hence, the central ghrelin signalling system provides a novel target for the development of drug strategies to treat addictive behaviours.
Behavioural Brain Research | 2011
Sara Landgren; Jörgen A. Engel; Petri Hyytiä; Henrik Zetterberg; Kaj Blennow; Elisabet Jerlhag
The mechanisms involved in alcohol use disorder, a chronic relapsing brain disorder, are complex and involve various signalling systems in the brain. Recently, the orexigenic peptide ghrelin was shown to be required for alcohol-induced reward, an effect mediated via ghrelin receptors, GHS-R1A, at the level of the cholinergic-dopaminergic reward link. Moreover, ghrelin increases and GHR-R1A antagonists reduce moderate alcohol consumption in mice, and a single nucleotide polymorphism in the GHS-R1A gene has been associated with high alcohol consumption in humans. Therefore, GHS-R1A gene expression and alcohol intake were investigated in high, AA (Alko, Alcohol), versus low, ANA (Alko, Non-Alcohol), alcohol consuming rats as well as in Wistar rats. In the AA and ANA rats plasma ghrelin levels were also measured. GHS-R1A gene expression was increased in AA compared to ANA rats in nucleus accumbens, ventral tegmental area, amygdala, prefrontal cortex and hippocampus. A similar trend was observed in the ventral tegmental area of Wistar rats consuming high amounts of alcohol. Furthermore, the AA rats had significantly smaller reduction of plasma ghrelin levels over time, after several weeks of alcohol exposure, than had the ANA rats. The present study provides further evidence for that the ghrelin signalling system, in particular at the level of the mesocortocolimbic dopamine system, is involved in alcohol consumption, and thus possibly contributes to alcohol use disorder. Therefore the GHS-R1A may constitute a novel candidate for development of new treatment strategies for alcohol dependence.
Mechanisms of Ageing and Development | 2010
Malin von Otter; Sara Landgren; Staffan Nilsson; Madeleine Zetterberg; Dragana Celojevic; Petra Bergström; Lennart Minthon; Nenad Bogdanovic; Niels Andreasen; Deborah Gustafson; Ingmar Skoog; Anders Wallin; Gunnar Tasa; Kaj Blennow; Michael Nilsson; Ola Hammarsten; Henrik Zetterberg
Alzheimers disease (AD) and age-related cataract, disorders characterized by protein aggregation causing late-onset disease, both involve oxidative stress. We hypothesize that common variants of NFE2L2 and KEAP1, the genes encoding the main regulators of the Nrf2 system, an important defence system against oxidative stress, may influence risk of AD and/or age-related cataract. This case-control study combines an AD material (725 cases and 845 controls), and a cataract material (489 cases and 182 controls). Genetic variation in NFE2L2 and KEAP1 was tagged by eight and three tag single nucleotide polymorphisms (SNPs), respectively. Single SNPs and haplotypes were analyzed for associations with disease risk, age parameters, MMSE and AD cerebrospinal fluid biomarkers. NFE2L2 and KEAP1 were not associated with risk of AD or cataract. However, one haplotype allele of NFE2L2 was associated with 2 years earlier age at AD onset (p(c)=0.013) and 4 years earlier age at surgery for posterior subcapsular cataract (p(c)=0.019). Another haplotype of NFE2L2 was associated with 4 years later age at surgery for cortical cataract (p(c)=0.009). Our findings do not support NFE2L2 or KEAP1 as susceptibility genes for AD or cataract. However, common variants of the NFE2L2 gene may affect disease progression, potentially altering clinically recognized disease onset.
Alcoholism: Clinical and Experimental Research | 2010
Sara Landgren; Elisabet Jerlhag; Jarmila Hallman; Lars Oreland; Lauren Lissner; Elisabeth Strandhagen; Dag S. Thelle; Henrik Zetterberg; Kaj Blennow; Jörgen A. Engel
INTRODUCTION Central ghrelin signaling is required for the rewarding effects of alcohol in mice. Because ghrelin is implied in other addictive behaviors such as eating disorders and smoking, and because there is co-morbidity between these disorders and alcohol dependence, the ghrelin signaling system could be involved in mediating reward in general. Furthermore, in humans, single nucleotide polymorphisms (SNPs) and haplotypes of the pro-ghrelin gene (GHRL) and the ghrelin receptor gene (GHSR) have previously been associated with increased alcohol consumption and increased body weight. Known gender differences in plasma ghrelin levels prompted us to investigate genetic variation of the ghrelin signaling system in females with severe alcohol dependence (n = 113) and in a selected control sample of female low-consumers of alcohol from a large cohort study in southwest Sweden (n = 212). METHODS Six tag SNPs in the GHRL (rs696217, rs3491141, rs4684677, rs35680, rs42451, and rs26802) and four tag SNPs in the GHSR (rs495225, rs2232165, rs572169, and rs2948694) were genotyped in all individuals. RESULTS We found that one GHRL haplotype was associated with reports of paternal alcohol dependence as well as with reports of withdrawal symptoms in the female alcohol-dependent group. Associations with 2 GHSR haplotypes and smoking were also shown. One of these haplotypes was also negatively associated with BMI in controls, while another haplotype was associated with having the early-onset, more heredity-driven, type 2 form of alcohol dependence in the patient group. CONCLUSION Taken together, the genes encoding the ghrelin signaling system cannot be regarded as major susceptibility genes for female alcohol dependence, but is, however, involved in paternal heritability and may affect other reward- and energy-related factors such as smoking and BMI.
Neuropsychobiology | 2011
Sara Landgren; Kristina Berglund; Elisabet Jerlhag; Claudia Fahlke; Jan Balldin; Ulf Berggren; Henrik Zetterberg; Kaj Blennow; Jörgen A. Engel
Components of the brain reward system, i.e. the mesolimbic dopamine, laterodorsal cholinergic and ghrelin signaling systems, have been implicated in alcohol reward in preclinical studies. Genetic variants of these systems have previously been linked to alcohol dependence. Here, we genotyped 31 single nucleotide polymorphisms (SNPs): 1 SNP in the dopamine D2 receptor (DRD2) gene, 20 SNPs in 5 different nicotinic acetylcholine receptor subunit (CHRN*) genes, and 10 SNPs in the genes encoding pro-ghrelin (GHRL) and its receptor (GHSR), in a pilot study of type 1 alcoholics (n = 84) and healthy controls (n = 32). These individuals were characterized using the Temperament and Character Inventory. None of the SNPs were associated with risk of alcohol dependence in this population. The GG genotype of SNP rs13261190 in the CHRNB3 was associated with increased novelty seeking, while SNPs of the ghrelin signaling system were associated with decreased self-directedness (AA of rs495225, GHSR) and alterations in self-transcendence (AA of both rs42451 and rs35680, GHRL). In conclusion, this pilot study suggests that reward-related genes are associated with altered personality scores in type 1 alcohol dependence, which warrants future studies of these associations in larger study samples.