Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara O. Vargas is active.

Publication


Featured researches published by Sara O. Vargas.


The American Journal of Surgical Pathology | 2005

Renal carcinomas with the t(6;11)(p21;q12): Clinicopathologic features and demonstration of the specific alpha-TFEB gene fusion by immunohistochemistry, RT-PCR, and DNA PCR

Pedram Argani; Marick Laé; Brian Hutchinson; Victor E. Reuter; Margaret H. Collins; John P. Perentesis; John E. Tomaszewski; John J. Brooks; Geza Acs; Julia A. Bridge; Sara O. Vargas; Ian J. Davis; David E. Fisher; Marc Ladanyi

A highly distinctive subset of renal neoplasms of children and young adults contains a t(6;11)(p21;q12), a translocation recently been shown to result in fusion of Alpha, a gene on 11q12, with the transcription factor gene TFEB on 6p21. To define the clinicopathologic spectrum of this nascent entity and to establish immunohistochemical (IHC) and molecular methods for the detection of the specific Alpha-TFEB fusion, we studied 7 renal neoplasms that showed the t(6;11) by cytogenetic or molecular analysis (patient age: range, 9-33 years; mean, 17 years). While all tumors were confined to the kidney, 3 tumors demonstrated vascular invasion. In limited follow-up, none has metastasized. We postulated that the Alpha-TFEB gene fusion may result in deregulated expression of TFEB protein that would be detectable by IHC. Using a polyclonal antibody to TFEB on formalin-fixed, paraffin-embedded tissue sections, we found that all 7 renal neoplasms with the t(6;11) demonstrated moderate (2 cases) or strong (5 cases) nuclear TFEB immunoreactivity. In contrast, none of 1089 other tumors (of 74 histologic types from 16 sites) labeled significantly for TFEB. Nuclear immunoreactivity for TFEB in normal tissues was extremely rare, limited to weak labeling of scattered benign lymphocytes. We also show that the Alpha-TFEB fusion RNAs are highly variable in size and structure, making detection by reverse-transcriptase polymerase chain reaction (RT-PCR) less reliable than for other gene fusions. Because Alpha is an intronless gene and therefore lacks splice signals, we hypothesized that DNA PCR and RT-PCR products would be identical, allowing for the use of more robust molecular assays based on genomic DNA. Indeed, in 2 cases with available frozen tissue, we showed the genomic Alpha-TFEB junction detected by DNA PCR to be identical to the Alpha-TFEB fusion mRNA detected by RT-PCR. In summary, renal neoplasms with the t(6;11) are a distinctive neoplastic entity with many similarities to the Xp11 translocation carcinomas, and together with the latter form a growing “MiTF/TFE family” of translocation carcinomas. Nuclear immunoreactivity for TFEB protein is a highly sensitive and specific diagnostic marker for these renal neoplasms. Finally, the special molecular features of the Alpha-TFEB gene fusion allow its molecular detection by DNA PCR as a robust alternative to RT-PCR in clinical tumor samples.


Journal of Clinical Oncology | 2004

Midline Carcinoma of Children and Young Adults With NUT Rearrangement

Christopher A. French; Jeffery L. Kutok; William C. Faquin; Jeffrey A. Toretsky; Cristina R. Antonescu; Constance A. Griffin; Vania Nose; Sara O. Vargas; Mary Moschovi; Fotini Tzortzatou-Stathopoulou; Isao Miyoshi; Antonio R. Perez-Atayde; Jonathan A. Fletcher

PURPOSE A balanced chromosomal translocation, t(15;19), resulting in the BRD4-NUT oncogene, has been identified in a lethal carcinoma of young people, a disease described primarily in case reports. We sought to amass a more definitive series of tumors with NUT and/or BRD4 gene rearrangements and to determine distinct clinicopathologic features. PATIENTS AND METHODS Carcinomas (N = 98) in young individuals (median age, 32.5 years) were screened for NUT and BRD4 rearrangements using dual-color fluorescence in situ hybridization. Four published carcinomas with BRD4 and NUT rearrangements were also evaluated. Immunophenotypic analyses were performed. RESULTS Eleven tumors had NUT gene rearrangements, including eight with BRD4-NUT fusions and three with novel rearrangements, which were designated as NUT variant. All NUT-rearranged carcinomas (NRCs) arose from midline epithelial structures, including the first example arising below the diaphragm. Patients were young (median age, 17.6 years). Squamous differentiation (seen in 82% of NRCs) was particularly striking in NUT-variant cases. In this first description of NUT-variant carcinomas, the average survival (96 weeks, n = 3) was longer than for BRD4-NUT carcinomas (28 weeks, n = 8). Strong CD34 expression was found in six of 11 NRCs but in zero of 45 NUT wild-type carcinomas. CONCLUSION NRCs arise from midline structures in young people, and NRCs with BRD4-NUT are highly lethal, despite intensive therapies. NUT-variant carcinomas might have a less fulminant clinical course than those with BRD4-NUT fusions. CD34 expression is characteristic in NRCs and, therefore, holds promise as a diagnostic test for this distinctive clinicopathologic entity.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation

Ian J. Davis; Bae Li Hsi; Jason D. Arroyo; Sara O. Vargas; Y. Albert Yeh; Gabriela Motyckova; Patricia Valencia; Antonio R. Perez-Atayde; Pedram Argani; Marc Ladanyi; Jonathan A. Fletcher; David E. Fisher

MITF, TFE3, TFEB, and TFEC comprise a transcription factor family (MiT) that regulates key developmental pathways in several cell lineages. Like MYC, MiT members are basic helix-loop-helix-leucine zipper transcription factors. MiT members share virtually perfect homology in their DNA binding domains and bind a common DNA motif. Translocations of TFE3 occur in specific subsets of human renal cell carcinomas and in alveolar soft part sarcomas. Although multiple translocation partners are fused to TFE3, each translocation product retains TFE3s basic helix–loop–helix leucine zipper. We have identified the genes fused by the chromosomal translocation t(6;11)(p21.1;q13), characteristic of another subset of renal neoplasms. In two primary tumors we found that Alpha, an intronless gene, rearranges with the first intron of TFEB, just upstream of TFEBs initiation ATG, preserving the entire TFEB coding sequence. Fluorescence in situ hybridization confirmed the involvement of both TFEB and Alpha in this translocation. Although the Alpha promoter drives expression of this fusion gene, the Alpha gene does not contribute to the ORF. Whereas TFE3 is typically fused to partner proteins in subsets of renal tumors, we found that wild-type, unfused TFE3 stimulates clonogenic growth in a cell-based assay, suggesting that dysregulated expression, rather than altered function of TFEB or TFE3 fusions, may confer neoplastic properties, a mechanism reminiscent of MYC activation by promoter substitution in Burkitts lymphoma. Alpha-TFEB is thus identified as a fusion gene in a subset of pediatric renal neoplasms.


American Journal of Pathology | 2001

BRD4 bromodomain gene rearrangement in aggressive carcinoma with translocation t(15;19).

Christopher A. French; Isao Miyoshi; Ichiro Kubonishi; Todd G. Kroll; Paola Dal Cin; Sara O. Vargas; Antonio R. Perez-Atayde; Jonathan A. Fletcher

Translocation t(15;19)(q13;p13.1) defines a lethal midline carcinoma arising adjacent to respiratory tract in young people. To characterize molecular alterations responsible for the distinctly aggressive biological behavior of this cancer, we mapped the chromosome 15 and 19 translocation breakpoints by fluorescence in situ hybridization (FISH) and Southern blotting. To evaluate preliminarily the frequency, anatomical distribution, and histological features of t(15;19) cancer, we developed a FISH assay for paraffin sections. Our findings reveal a novel oncogenic mechanism in which the chromosome 19 translocation breakpoint interrupts the coding sequence of a bromodomain gene, BRD4. These studies implicate BRD4 as a potential partner in a t(15;19)-associated fusion oncogene. In addition, we localized the chromosome 15 breakpoint to a 9-kb region in each of two cases, thereby identifying several candidate oncogenes which might represent the BRD4 fusion partner. FISH evaluation of 13 pediatric carcinomas revealed t(15;19) in one of four sinonasal carcinomas, whereas this translocation was not detected in thymic (n = 3), mucoepidermoid (n = 3), laryngeal (n = 2), or nasopharyngeal (n = 1) carcinomas. Our studies shed light on the oncogenic mechanism underlying t(15;19) and provide further evidence that this highly lethal cancer arises from respiratory mucosa.


PLOS Genetics | 2005

Fog2 Is Required for Normal Diaphragm and Lung Development in Mice and Humans

Kate G. Ackerman; Bruce Herron; Sara O. Vargas; Hailu Huang; Sergei G. Tevosian; Lazaros Kochilas; Cherie Rao; Barbara R. Pober; Randal P. Babiuk; Jonathan A. Epstein; John J. Greer; David R. Beier

Congenital diaphragmatic hernia and other congenital diaphragmatic defects are associated with significant mortality and morbidity in neonates; however, the molecular basis of these developmental anomalies is unknown. In an analysis of E18.5 embryos derived from mice treated with N-ethyl-N-nitrosourea, we identified a mutation that causes pulmonary hypoplasia and abnormal diaphragmatic development. Fog2 (Zfpm2) maps within the recombinant interval carrying the N-ethyl-N-nitrosourea-induced mutation, and DNA sequencing of Fog2 identified a mutation in a splice donor site that generates an abnormal transcript encoding a truncated protein. Human autopsy cases with diaphragmatic defect and pulmonary hypoplasia were evaluated for mutations in FOG2. Sequence analysis revealed a de novo mutation resulting in a premature stop codon in a child who died on the first day of life secondary to severe bilateral pulmonary hypoplasia and an abnormally muscularized diaphragm. Using a phenotype-driven approach, we have established that Fog2 is required for normal diaphragm and lung development, a role that has not been previously appreciated. FOG2 is the first gene implicated in the pathogenesis of nonsyndromic human congenital diaphragmatic defects, and its necessity for pulmonary development validates the hypothesis that neonates with congenital diaphragmatic hernia may also have primary pulmonary developmental abnormalities.


Journal of Immunology | 2005

MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages.

Mohamed S. Arredouani; Aiyappa Palecanda; Henry Koziel; Yuh Ching Huang; Amy Imrich; Timothy H. Sulahian; Yao Yu Ning; Zhiping Yang; Timo Pikkarainen; Marko Sankala; Sara O. Vargas; Motohiro Takeya; Karl Tryggvason; Lester Kobzik

Alveolar macrophages (AMs) avidly bind and ingest inhaled environmental particles and bacteria. To identify the particle binding receptor(s) on human AMs, we used functional screening of anti-human AM hybridomas and isolated a mAb, PLK-1, which inhibits AM binding of unopsonized particles (e.g., TiO2, latex beads; 63 ± 5 and 67 ± 4% inhibition, respectively, measured by flow cytometry; n = 11) and unopsonized bacteria (∼84 and 41% inhibition of Escherichia coli and Staphylococcus aureus binding by mAb PLK-1, respectively). The PLK-1 Ag was identified as the human class A scavenger receptor (SR) MARCO (macrophage receptor with collagenous structure) by observing specific immunolabeling of COS cells transfected with human MARCO (but not SR-AI/II) cDNA and by immunoprecipitation by PLK-1 of a protein of appropriate molecular mass (∼70 kDa) from both normal human bronchoalveolar lavage cells (>90% AMs) and human MARCO-transfected COS cells. PLK-1 also specifically inhibited particle binding by COS cells, only after transfection with human MARCO cDNA. Immunostaining showed specific labeling of AMs within human lung tissue, bronchoalveolar lavage samples, as well as macrophages in other sites (e.g., lymph node and liver). Using COS transfectants with different truncated forms of MARCO, allowed epitope mapping for the PLK-1 Ab to MARCO domain V between amino acid residues 420 and 431. A panel of Abs to various SRs identified expression on AMs, but failed to inhibit TiO2 or S. aureus binding. The data support a dominant role for MARCO in the human AM defense against inhaled particles and pathogens.


Journal of Clinical Investigation | 2014

Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension

Thomas Bertero; Yu Lu; Sofia Annis; Andrew Hale; Balkrishen Bhat; Rajan Saggar; Rajeev Saggar; W. Dean Wallace; David J. Ross; Sara O. Vargas; Brian B. Graham; Rahul Kumar; Stephen M. Black; Sohrab Fratz; Jeffrey R. Fineman; James West; Kathleen J. Haley; Aaron B. Waxman; B. Nelson Chau; Katherine A. Cottrill; Stephen Y. Chan

Development of the vascular disease pulmonary hypertension (PH) involves disparate molecular pathways that span multiple cell types. MicroRNAs (miRNAs) may coordinately regulate PH progression, but the integrative functions of miRNAs in this process have been challenging to define with conventional approaches. Here, analysis of the molecular network architecture specific to PH predicted that the miR-130/301 family is a master regulator of cellular proliferation in PH via regulation of subordinate miRNA pathways with unexpected connections to one another. In validation of this model, diseased pulmonary vessels and plasma from mammalian models and human PH subjects exhibited upregulation of miR-130/301 expression. Evaluation of pulmonary arterial endothelial cells and smooth muscle cells revealed that miR-130/301 targeted PPARγ with distinct consequences. In endothelial cells, miR-130/301 modulated apelin-miR-424/503-FGF2 signaling, while in smooth muscle cells, miR-130/301 modulated STAT3-miR-204 signaling to promote PH-associated phenotypes. In murine models, induction of miR-130/301 promoted pathogenic PH-associated effects, while miR-130/301 inhibition prevented PH pathogenesis. Together, these results provide insight into the systems-level regulation of miRNA-disease gene networks in PH with broad implications for miRNA-based therapeutics in this disease. Furthermore, these findings provide critical validation for the evolving application of network theory to the discovery of the miRNA-based origins of PH and other diseases.


Cancer Research | 2011

Differentiation of NUT midline carcinoma by epigenomic reprogramming.

Brian E. Schwartz; Matthias D. Hofer; Madeleine E. Lemieux; Daniel E. Bauer; Michael J. Cameron; Nathan West; Elin S. Agoston; Nicolas Reynoird; Saadi Khochbin; Tan A. Ince; Amanda L. Christie; Katherine A. Janeway; Sara O. Vargas; Antonio R. Perez-Atayde; Stephen E. Sallan; Andrew L. Kung; James E. Bradner; Christopher A. French

NUT midline carcinoma (NMC) is a lethal pediatric tumor defined by the presence of BRD-NUT fusion proteins that arrest differentiation. Here we explore the mechanisms underlying the ability of BRD4-NUT to prevent squamous differentiation. In both gain-of and loss-of-expression assays, we find that expression of BRD4-NUT is associated with globally decreased histone acetylation and transcriptional repression. Bulk chromatin acetylation can be restored by treatment of NMC cells with histone deacetylase inhibitors (HDACi), engaging a program of squamous differentiation and arrested growth in vitro that closely mimics the effects of siRNA-mediated attenuation of BRD4-NUT expression. The potential therapeutic utility of HDACi differentiation therapy was established in three different NMC xenograft models, where it produced significant growth inhibition and a survival benefit. Based on these results and translational studies performed with patient-derived primary tumor cells, a child with NMC was treated with the FDA-approved HDAC inhibitor, vorinostat. An objective response was obtained after five weeks of therapy, as determined by positron emission tomography. These findings provide preclinical support for trials of HDACi in patients with NMC.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Hypersusceptibility of cystic fibrosis mice to chronic Pseudomonas aeruginosa oropharyngeal colonization and lung infection

Fadie T. Coleman; Simone Mueschenborn; Gloria Meluleni; Christopher Ray; Vincent J. Carey; Sara O. Vargas; Carolyn L. Cannon; Frederick M. Ausubel; Gerald B. Pier

No transgenic cystic fibrosis (CF) mouse model developed to date mimics the major clinical phenotype found in humans with CF, chronic Pseudomonas aeruginosa lung infection. In a transgenic CF transmembrane conductance regulator (cftr) mouse colony, we found WT, heterozygous, and homozygous CF mice housed in the same cage became chronically colonized in the oropharynx with environmental P. aeruginosa when the bacterium was present in drinking water. Elimination of P. aeruginosa from drinking water resulted in clearance in most WT and CF heterozygous, but not homozygous mice. For experimental evaluation, a combination of specific animal husbandry techniques and an oral infection route showed cftr−/− mice but not WT mice can be chronically colonized by P. aeruginosa with subsequent lung translocation, yielding a pathologic picture indicative of chronic lung infection. In some instances, mucoid isolates of P. aeruginosa were recovered from lungs, indicating conditions were present for conversion to mucoidy. Overexpression of human CFTR in the lungs of WT mice markedly accelerated the clearance rate of P. aeruginosa, demonstrating that lung levels of CFTR play an important role in defense against infection. P. aeruginosa mutants unable to express the surface polysaccharide alginate or the global regulator GacA were deficient in their ability to colonize the mice. CF mice made potent immune responses to P. aeruginosa outer membrane antigens. Overall, we found that under the proper conditions, transgenic CF mice are hypersusceptible to P. aeruginosa colonization and infection and can be used for evaluations of lung pathophysiology, bacterial virulence, and development of therapies aimed at treating CF lung disease.


Pediatric and Developmental Pathology | 2006

Bronchial Atresia Is Common to Extralobar Sequestration, Intralobar Sequestration, Congenital Cystic Adenomatoid Malformation, and Lobar Emphysema

Wolfram F. J. Riedlinger; Sara O. Vargas; Russell W. Jennings; Judy A. Estroff; Carol E. Barnewolt; Craig W. Lillehei; Jay M. Wilson; Andrew A. Colin; Lynne Reid; Harry P. Kozakewich

Congenital cystic adenomatoid malformation (CCAM), intralobar sequestration (ILS), extralobar sequestration (ELS), and lobar emphysema (LE) are well-accepted entities; however, certain findings are common to all, particularly the parenchymal maldevelopment characterizing CCAM. Isolated reports have described bronchial atresia (BA) in some specimens in all 4 entities, but this finding has not been evaluated in a prospective manner. With the aid of a dissecting microscope, we prospectively examined 47 lung specimens resected during the past 4 years and submitted with the clinical impression of ELS (n = 11), ILS (n = 11), CCAM (n = 20), LE (n = 4), and airway-esophageal communication (n = 1). Most lesions were detected by prenatal ultrasound and were resected during infancy. The clinical impression and pathologic findings were compared. Pathologic examination revealed atresia of a lobar, segmental, or subsegmental bronchus in 100% of ELS, 82% of ILS, 70% of CCAM, and 50% of LE (those clinically recognized to have BA or minor CCAM) cases. Parenchymal maldevelopment that characterizes CCAM was present in 100% of CCAM cases (as expected by definition) as well as in 91% of ELS, 91% of ILS, and 50% of LE (those with BA) cases. Bronchial atresia is present in all ELS, most ILS and CCAM, and some LE cases, and its detection is greatly enhanced with the dissecting microscope. Bronchial atresia and CCAM nearly always coexist. It may be that both have the same etiopathogenesis with anatomic differences accounted for by aberrant genetic programs or other insults, perhaps modified by time of onset or duration.

Collaboration


Dive into the Sara O. Vargas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reza Rahbar

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kathleen J. Haley

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Brian B. Graham

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

David J. Ross

University of California

View shared research outputs
Top Co-Authors

Avatar

Rahul Kumar

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Rajan Saggar

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Hale

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Sofia Annis

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge