Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara Palchetti is active.

Publication


Featured researches published by Sara Palchetti.


ACS Nano | 2016

Exploring Cellular Interactions of Liposomes Using Protein Corona Fingerprints and Physicochemical Properties

Arafeh Bigdeli; Sara Palchetti; Daniela Pozzi; Mohammad Reza Hormozi-Nezhad; Francesca Baldelli Bombelli; Giulio Caracciolo; Morteza Mahmoudi

To control liposomes fate and transport upon contact with biofluids, it is essential to consider several parameters affecting the synthetic and biological identity of liposomes, as well as liposome-protein corona (PC) aspects. As a powerful tool in this data mining adventure, quantitative structure-activity relationship (QSAR) approach is used to correlate physicochemical properties of liposomes and their PC fingerprints to multiple quantified biological responses. In the present study, the relationship between cellular interactions of a set of structurally diverse liposomal formulations and their physicochemical and PC properties has been investigated via linear and nonlinear QSAR models. Significant parameters affecting cellular uptake and cell viability of liposomes in two important cancer cell lines (PC3 and HeLa) have been identified. The developed QSARs have the capacity to be implemented in advanced targeted delivery of liposomal drugs.


Langmuir | 2015

Stealth Effect of Biomolecular Corona on Nanoparticle Uptake by Immune Cells

Giulio Caracciolo; Sara Palchetti; Valentina Colapicchioni; Luca Digiacomo; Daniela Pozzi; Anna Laura Capriotti; Giorgia La Barbera; Aldo Laganà

When injected in a biological milieu, a nanomaterial rapidly adsorbs biomolecules forming a biomolecular corona. The biomolecular corona changes the interfacial composition of a nanomaterial giving it a biological identity that determines the physiological response. Characterization of the biomolecular structure and composition has received increasing attention mostly due to its detrimental impact on the nanomaterials metabolism in vivo. It is generally accepted that an opsonin-enriched biomolecular corona promotes immune system recognition and rapid clearance from circulation. Here we applied dynamic light scattering and nanoliquid chromatography tandem mass spectrometry to thoroughly characterize the biomolecular corona formed around lipid and silica nanoparticles (NPs). Incubation with human plasma resulted in the formation of NP-biomolecular coronas enriched with immunoglobulins, complement factors, and coagulation proteins that bind to surface receptors on immune cells and elicit phagocytosis. Conversely, we found that protein-coated NPs were protected from uptake by macrophage RAW 264.7 cells. This implies that the biomolecular corona formation provides a stealth effect on macrophage recognition. Our results suggest that correct prediction of the NPs fate in vivo will require more than just the knowledge of the biomolecular corona composition. Validation of efficient methods for mapping protein binding sites on the biomolecular corona of NPs is an urgent task for future research.


Journal of Biological Chemistry | 2015

Transfected poly(I:C) activates different dsRNA receptors, leading to apoptosis or immunoadjuvant response in androgen-independent prostate cancer cells.

Sara Palchetti; Donatella Starace; Paola De Cesaris; Antonio Filippini; Elio Ziparo; Anna Riccioli

Background: Castration-resistant prostate cancer (CRPC) is refractory to chemo-radiotherapy. Results: Transfection of the synthetic analog of dsRNA poly(I:C) simultaneously stimulates apoptosis and IFN-β expression through different pathways in androgen-independent prostate cancer (PCa) cells. Conclusion: Dual parallel pathways triggered by distinct receptors activate direct and immunologically mediated antitumor effects in advanced PCa. Significance: The proapoptotic/immunoadjuvant poly(I:C)-Lipofectamine complex may offer new therapeutic insights into CRPC. Despite the effectiveness of surgery or radiation therapy for the treatment of early-stage prostate cancer (PCa), there is currently no effective strategy for late-stage disease. New therapeutic targets are emerging; in particular, dsRNA receptors Toll-like receptor 3 (TLR3) and cytosolic helicases expressed by cancer cells, once activated, exert a pro-apoptotic effect in different tumors. We previously demonstrated that the synthetic analog of dsRNA poly(I:C) induces apoptosis in the androgen-dependent PCa cell line LNCaP in a TLR3-dependent fashion, whereas only a weak apoptotic effect is observed in the more aggressive and androgen-independent PCa cells PC3 and DU145. In this paper, we characterize the receptors and the signaling pathways involved in the remarkable apoptosis induced by poly(I:C) transfected by Lipofectamine (in-poly(I:C)) compared with the 12-fold higher free poly(I:C) concentration in PC3 and DU145 cells. By using genetic inhibition of different poly(I:C) receptors, we demonstrate the crucial role of TLR3 and Src in in-poly(I:C)-induced apoptosis. Therefore, we show that the increased in-poly(I:C) apoptotic efficacy is due to a higher binding of endosomal TLR3. On the other hand, we show that in-poly(I:C) binding to cytosolic receptors MDA5 and RIG-I triggers IRF3-mediated signaling, leading uniquely to the up-regulation of IFN-β, which likely in turn induces increased TLR3, MDA5, and RIG-I proteins. In summary, in-poly(I:C) activates two distinct antitumor pathways in PC3 and DU145 cells: one mediated by the TLR3/Src/STAT1 axis, leading to apoptosis, and the other one mediated by MDA5/RIG-I/IRF3, leading to immunoadjuvant IFN-β expression.


The International Journal of Biochemistry & Cell Biology | 2016

Personalized liposome-protein corona in the blood of breast, gastric and pancreatic cancer patients

Valentina Colapicchioni; Martina Tilio; Luca Digiacomo; Valentina Gambini; Sara Palchetti; Cristina Marchini; Daniela Pozzi; Sergio Occhipinti; Augusto Amici; Giulio Caracciolo

When nanoparticles (NPs) are dispersed in a biofluid, they are covered by a protein corona the composition of which strongly depends on the protein source. Recent studies demonstrated that the type of disease has a crucial role in the protein composition of the NP corona with relevant implications on personalized medicine. Proteomic variations frequently occur in cancer with the consequence that the bio-identity of NPs in the blood of cancer patients may differ from that acquired after administration to healthy volunteers. In this study we investigated the correlation between alterations of plasma proteins in breast, gastric and pancreatic cancer and the biological identity of clinically approved AmBisome-like liposomes as determined by a combination of dynamic light scattering, zeta potential analysis, one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1D-SDS-PAGE) and semi-quantitative densitometry. While size of liposome-protein complexes was not significantly different between cancer groups, the hard corona from pancreatic cancer patients was significantly less negatively charged. Of note, the hard corona from pancreatic cancer patients was more enriched than those of other cancer types this enrichment being most likely due to IgA and IgG with possible correlations with the autoantibodies productions in cancer. Given the strict relationship between tumor antigen-specific autoantibodies and early cancer detection, our results could be the basis for the development of novel nanoparticle-corona-based screening tests of cancer.


OncoImmunology | 2017

Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: Role of HSP70/TLR2/NF-kB axis

Elisabetta Vulpis; Francesca Cecere; Rosa Molfetta; Alessandra Soriani; Cinzia Fionda; Giovanna Peruzzi; Giulio Caracciolo; Sara Palchetti; Laura Masuelli; Lucilla Simonelli; Ugo D'Oro; Maria Pia Abruzzese; Maria Teresa Petrucci; Maria Rosaria Ricciardi; Rossella Paolini; Marco Cippitelli; Angela Santoni; Alessandra Zingoni

ABSTRACT Exosomes are a class of nanovesicles formed and released through the late endosomal compartment and represent an important mode of intercellular communication. The ability of anticancer chemotherapy to enhance the immunogenic potential of malignant cells mainly relies on the establishment of the immunogenic cell death (ICD) and the release of damage-associated molecular patterns (DAMPs). Here, we investigated whether genotoxic stress could promote the release of exosomes from multiple myeloma (MM) cells and studied the immunomodulatory properties they exert on NK cells, a major component of the antitumor immune response playing a key role in the immunosurveillance of MM. Our findings show that melphalan, a genotoxic agent used in MM therapy, significantly induces an increased exosome release from MM cells. MM cell-derived exosomes are capable of stimulating IFNγ production, but not the cytotoxic activity of NK cells through a mechanism based on the activation of NF-κB pathway in a TLR2/HSP70-dependent manner. Interestingly, HSP70+ exosomes are primarily found in the bone marrow (BM) of MM patients suggesting that they might have a crucial immunomodulatory action in the tumor microenvironment. We also provide evidence that the CD56high NK cell subset is more responsive to exosome-induced IFNγ production mediated by TLR2 engagement. All together, these findings suggest a novel mechanism of synergism between chemotherapy and antitumor innate immune responses based on the drug-promotion of nanovesicles exposing DAMPs for innate receptors.


Journal of Materials Chemistry B | 2016

Exploitation of nanoparticle-protein corona for emerging therapeutic and diagnostic applications

Sara Palchetti; Daniela Pozzi; Morteza Mahmoudi; Giulio Caracciolo

Exposure of nanoparticles (NPs) to biological fluids (e.g., plasma, interstitial fluid, and cytoplasm) leads to the absorption of proteins on the NP surface, forming a protein corona (PC) that drastically influences the NP physicochemical properties. Herein, we highlight the emerging applications of PC towards its use in therapeutics and diagnostics. In particular, special emphasis is given to the exploitation of PC for targeted delivery of nanomaterials and early cancer detection. By highlighting such recent applications of PC, we hope to demonstrate that this bio-entity has the potential to determine the success of NPs in biomedicine beyond their currently envisioned purposes.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

Manipulation of lipoplex concentration at the cell surface boosts transfection efficiency in hard-to-transfect cells

Sara Palchetti; Daniela Pozzi; Cristina Marchini; Augusto Amici; Cristina Andreani; Caterina Bartolacci; Luca Digiacomo; Valentina Gambini; Francesco Cardarelli; Carmine Di Rienzo; Giovanna Peruzzi; Heinz Amenitsch; Rocco Palermo; Isabella Screpanti; Giulio Caracciolo

To date, efficiency upon non-viral DNA delivery remains low and this implies the existence of unidentified transfection barriers. Here we explore the mechanisms of action of multicomponent (MC) cationic liposome/DNA complexes (lipoplexes) by a combination of reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), fluorescence activated cell sorting (FACS) analysis and laser scanning confocal microscopy (LSCM) in live cells. Lipofectamine - the gold standard among transfection reagents - was used as a reference. On the basis of our results, we suggest that an additional transfection barrier impairs transfection efficiency, that is: low lipoplex concentration at the cell surface. Based on the acquired knowledge we propose an optimized transfection protocol that allowed us to efficiently transfect DND41, JURKAT, MOLT3, P12-ICHIKAWA, ALL-SILL, TALL-1 human T-cell acute lymphoblastic leukemia (T-ALL) cell lines known to be difficult-to-transfect by using non-viral vectors and where LFN-based technologies fail to give satisfactory results.


RSC Advances | 2017

In vivo protein corona patterns of lipid nanoparticles

Augusto Amici; Giulio Caracciolo; Luca Digiacomo; Valentina Gambini; Cristina Marchini; Martina Tilio; Anna Laura Capriotti; Valentina Colapicchioni; Roberto Matassa; Giuseppe Familiari; Sara Palchetti; Daniela Pozzi; Morteza Mahmoudi; Aldo Laganà

In physiological environments (e.g. the blood), nanoparticles (NPs) are surrounded by a layer of biomolecules referred to as a ‘protein corona’ (PC). The most tightly NP-bound proteins form the so-called hard corona (HC), the key bio-entity that determines the NPs biological identity and physiological response. To date, NP-HC has been almost exclusively characterized in vitro, while NP–protein interactions under realistic in vivo conditions remain largely unexplored. In this study, we thoroughly characterized the in vivo HC of a NP formulation that forms around lipid nanoparticles with a lipid composition equal to that of clinically used liposomal amphotericin B (AmBisome®) after the recovery of the NPs from the blood circulation of FVB/N mice 10 minutes post intravenous administration. In vitro HC formed by 10 minutes incubation of NPs in FVB/N mouse plasma was used for comparison. Here we show that the biological identity (i.e. size, zeta-potential and aggregation state) of NPs in vivo is significantly different from that acquired in vitro. Furthermore, the variety of protein species in the in vivo HC was considerably larger. The present work has demonstrated that characterization of the in vivo HC is essential to provide an accurate molecular description of the biological identity of NPs in physiological environments.


Frontiers in Immunology | 2017

Tumor-Derived Microvesicles Modulate Antigen Cross-Processing via Reactive Oxygen Species-Mediated Alkalinization of Phagosomal Compartment in Dendritic Cells

Federico Battisti; Chiara Napoletano; Hassan Rahimi Koshkaki; Francesca Belleudi; Ilaria Grazia Zizzari; Ilary Ruscito; Sara Palchetti; Filippo Bellati; Pierluigi Benedetti Panici; Maria Rosaria Torrisi; Giulio Caracciolo; Fabio Altieri; Marianna Nuti; Aurelia Rughetti

Dendritic cells (DCs) are the only antigen-presenting cells able to prime naïve T cells and cross-prime antigen-specific CD8+ T cells. Their functionality is a requirement for the induction and maintenance of long-lasting cancer immunity. Albeit intensively investigated, the in vivo mechanisms underlying efficient antigen cross-processing and presentation are not fully understood. Several pieces of evidence indicate that antigen transfer to DCs mediated by microvesicles (MVs) enhances antigen immunogenicity. This mechanism is also relevant for cross-presentation of those tumor-associated glycoproteins such as MUC1 that are blocked in HLA class II compartment when internalized by DCs as soluble molecules. Here, we present pieces of evidence that the internalization of tumor-derived MVs modulates antigen-processing machinery of DCs. Employing MVs derived from ovarian cancer ascites fluid and established tumor cell lines, we show that MV uptake modifies DC phagosomal microenvironment, triggering reactive oxygen species (ROS) accumulation and early alkalinization. Indeed, tumor MVs carry radical species and the MV uptake by DCs counteracts the chemically mediated acidification of the phagosomal compartment. Further pieces of evidence suggest that efficacious antigen cross-priming of the MUC1 antigen carried by the tumor MVs results from the early signaling induced by MV internalization and the function of the antigen-processing machinery of DCs. These results strongly support the hypothesis that tumor-derived MVs impact antigen immunogenicity by tuning the antigen-processing machinery of DCs, besides being carrier of tumor antigens. Furthermore, these findings have important implications for the exploitation of MVs as antigenic cell-free immunogen for DC-based therapeutic strategies.


Journal of Materials Chemistry B | 2015

Killing cancer cells using nanotechnology: Novel poly(I:C) loaded liposome-silica hybrid nanoparticles

Valentina Colapicchioni; Sara Palchetti; Daniela Pozzi; Elettra Sara Marini; Anna Riccioli; Elio Ziparo; Massimiliano Papi; Heinz Amenitsch; Giulio Caracciolo

Polyinosinic-polycytidylic acid (poly(I:C)) is a synthetic double-stranded RNA (dsRNA) analog able to induce apoptosis in different cancer cells by the activation of toll-like receptor 3 (TLR3) and cytosolic helicases, retinoic acid inducible gene I (RIG-I) like receptors. In this work, we have synthesized and thoroughly characterized a core-shell liposome-silica hybrid (LSH) nanoparticle (NP) made of a silica core surrounded by a multicomponent cationic lipid bilayer. In view of in vivo applications, a variant with polyethyleneglycol (PEG) grafted onto the lipid surface was also synthesized. Poly(I:C)-loaded LSH NPs were characterized and optimized in terms of their chemical-physical properties by using dynamic light scattering (DLS), micro-electrophoresis and transmission electron microscopy (TEM). The ability of this new technology to kill cancer cells was validated in PC3 prostate cancer and MCF7 breast cancer cells by MTT proliferation assay, flow cytometry and fluorescence confocal microscopy. We found that negatively charged poly(I:C)-loaded LSH NPs are more efficient than their liposome counterpart in eliminating cancer cells, thus representing excellent candidates for both in vitro and in vivo drug delivery applications.

Collaboration


Dive into the Sara Palchetti's collaboration.

Top Co-Authors

Avatar

Giulio Caracciolo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Daniela Pozzi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Luca Digiacomo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aldo Laganà

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Valentina Colapicchioni

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Anna Riccioli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Morteza Mahmoudi

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

D. Pozzi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Massimiliano Papi

Catholic University of the Sacred Heart

View shared research outputs
Researchain Logo
Decentralizing Knowledge