Sara Prickett
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sara Prickett.
The Journal of Allergy and Clinical Immunology | 2011
Sara Prickett; Astrid Voskamp; April Dacumos-Hill; Karen Symons; Jennifer M. Rolland; Robyn E. O'Hehir
BACKGROUND Peanut allergy is a life-threatening condition; there is currently no cure. Although whole allergen extracts are used for specific immunotherapy for many allergies, they can cause severe reactions, and even fatalities, in peanut allergy. OBJECTIVE This study aimed to identify short, T-cell epitope-based peptides that target allergen-specific CD4(+) T cells but do not bind IgE as candidates for safe peanut-specific immunotherapy. METHODS Multiple CD4(+) T-cell lines specific for the major peanut allergen Ara h 2 were generated from PBMCs of 16 HLA-diverse subjects with peanut allergy by using 5,6-carboxyfluorescein diacetate succinimidylester-based methodology. Proliferation and ELISPOT assays were used to identify dominant epitopes recognized by T-cell lines and to confirm recognition by peripheral blood T cells of epitope-based peptides modified for therapeutic production. HLA restriction of core epitope recognition was investigated by using anti-HLA blocking antibodies and HLA genotyping. Serum-IgE peptide-binding was assessed by dot-blot. RESULTS Five dominant CD4(+) T-cell epitopes were identified in Ara h 2. In combination, these were presented by HLA-DR, HLA-DP, and HLA-DQ molecules and recognized by T cells from all 16 subjects. Three short peptide variants containing these T-cell epitopes were designed with cysteine-to-serine substitutions to facilitate stability and therapeutic production. Variant peptides showed HLA-binding degeneracy, did not bind peanut-specific serum IgE, and could directly target T(H)2-type T cells in peripheral blood of subjects with allergy. CONCLUSION Short CD4(+) T-cell epitope-based Ara h 2 peptides were identified as novel candidates for a T-cell-targeted peanut-specific immunotherapy for an HLA-diverse population.
Infection and Immunity | 2006
Rosalind Polley; Simona Stäger; Sara Prickett; Asher Maroof; Soombul Zubairi; Deborah F. Smith; Paul M. Kaye
ABSTRACT CD8+ T cells have a protective role in experimental visceral leishmaniasis. However, the observation that inflammatory cytokines induce bystander activation of CD8+ T cells questions the need for antigen-dependent effector function. Here, we demonstrate that successful adoptive immunotherapy with CD8+ T cells is strictly dependent upon the presence of cognate antigen.
Clinical & Experimental Allergy | 2013
Sara Prickett; Astrid Voskamp; Tracy Phan; April Dacumos-Hill; Stuart I. Mannering; Jennifer M. Rolland; Robyn E. O'Hehir
Peanut allergy is a life‐threatening condition; there is currently no cure. While whole allergen extracts are used for specific immunotherapy for many allergies, they can cause severe reactions and even fatalities in peanut allergy.
Clinical & Experimental Allergy | 2015
Sara Prickett; Jennifer M. Rolland; Robyn E. O'Hehir
Allergen immunotherapy (AIT) has been practised since 1911 and remains the only therapy proven to modify the natural history of allergic diseases. Although efficacious in carefully selected individuals, the currently licensed whole allergen extracts retain the risk of IgE‐mediated adverse events, including anaphylaxis and occasionally death. This together with the need for prolonged treatment regimens results in poor patient adherence. The central role of the T cell in orchestrating the immune response to allergen informs the choice of T cell targeted therapies for down‐regulation of aberrant allergic responses. Carefully mapped short synthetic peptides that contain the dominant T cell epitopes of major allergens and bind to a diverse array of HLA class II alleles, can be delivered intradermally into non‐inflamed skin to induce sustained clinical and immunological tolerance. The short peptides from allergenic proteins are unable to cross‐link IgE and possess minimal inflammatory potential. Systematic progress has been made from in vitro human models of allergen T cell epitope‐based peptide anergy in the early 1990s, through proof‐of‐concept murine allergy models and early human trials with longer peptides, to the current randomized, double‐blind, placebo‐controlled clinical trials with the potential new class of synthetic short immune‐regulatory T cell epitope peptide therapies. Sustained efficacy with few adverse events is being reported for cat, house dust mite and grass pollen allergy after only a short course of treatment. Underlying immunological mechanisms remain to be fully delineated but anergy, deletion, immune deviation and Treg induction all seem contributory to successful outcomes, with changes in IgG4 apparently less important compared to conventional AIT. T cell epitope peptide therapy is promising a safe and effective new class of specific treatment for allergy, enabling wider application even for more severe allergic diseases.
PLOS ONE | 2013
Astrid Voskamp; Sara Prickett; Fabienne Mackay; Jennifer M. Rolland; Robyn E. O'Hehir
The antigen-presenting abilities of basophils and their role in initiating a Th2 phenotype is a topic of current controversy. We aimed to determine whether human basophils can be induced to express MHC Class II and act as antigen presenting cells for T cell stimulation. Isolated human basophils were exposed to a panel of cytokines and TLR-ligands and assessed for MHC Class II expression. MHC Class II was expressed in up to 17% of isolated basophils following incubation with a combination of IL-3, IFN-γ and GM-CSF for 72 hours. Costimulatory molecules (CD80 and CD86) were expressed at very low levels after stimulation. Gene expression analysis of MHC Class II-positive basophils confirmed up-regulation of HLA-DR, HLA-DM, CD74 and Cathepsin S. However, MHC Class II expressing basophils were incapable of inducing antigen-specific T cell activation or proliferation. This is the first report of significant cytokine-induced MHC Class II up-regulation, at both RNA and protein level, in isolated human basophils. By testing stimulation with relevant T cell epitope peptide as well as whole antigen, the failure of MHC Class II expressing basophils to induce T cell response was shown not to be solely due to inefficient antigen uptake and/or processing.
Clinical & Experimental Allergy | 2012
Philipp Starkl; F. Felix; Durga Krishnamurthy; Caroline Stremnitzer; Franziska Roth-Walter; Sara Prickett; Astrid Voskamp; K. Szalai; Marlene Weichselbaumer; Robyn E. O'Hehir; Erika Jensen-Jarolim
Peanut allergy causes severe type 1 hypersensitivity reactions and conventional immunotherapy against peanut allergy is associated with a high risk of anaphylaxis.
Journal of Immunology | 2006
Sara Prickett; Peter M. Gray; Sara L. Colpitts; Phillip Scott; Paul M. Kaye; Deborah F. Smith
The importance of the site of Ag localization within microbial pathogens for the effective generation of CD8+ T cells has been studied extensively, generally supporting the view that Ag secretion within infected target cells is required for optimal MHC class I-restricted Ag presentation. In contrast, relatively little is known about the importance of pathogen Ag localization for the activation of MHC class II-restricted CD4+ T cells, despite their clear importance for host protection. We have used the N-terminal targeting sequence of Leishmania major hydrophilic acylated surface protein B to generate stable transgenic lines expressing physiologically relevant levels of full-length OVA on the surface of metacyclic promastigotes and amastigotes. In addition, we have mutated the hydrophilic acylated surface protein B N-terminal acylation sequence to generate control transgenic lines in which OVA expression is restricted to the parasite cytosol. In vitro, splenic dendritic cells are able to present membrane-localized, but not cytosolic, OVA to OVA-specific DO.11 T cells. Strikingly and unexpectedly, surface localization of OVA is also a strict requirement for recognition by OVA-specific T cells (DO.11 and OT-II) and for the development of OVA-specific Ab responses in vivo. However, recognition of cytosolic OVA could be observed with increasing doses of infection. These data suggest that, even under in vivo conditions, where varied pathways of Ag processing are likely to operate, the site of Leishmania Ag localization is an important determinant of immunogenicity and hence an important factor when considering the likely candidacy of vaccine Ags for inducing CD4+ T cell-dependent immunity.
Infection and Immunity | 2005
Rosalind Polley; Stephanie L. Sanos; Sara Prickett; Ashraful Haque; Paul M. Kaye
ABSTRACT It has been proposed that long-lived memory T cells generated by vaccination or infection reside within a memory compartment that has a finite size. Consequently, in a variety of acute infection models interclonal competition has been shown to lead to attrition of preexisting memory CD8+ T cells. Contrary to expectations, therefore, we found that chronic Leishmania donovani infection of Listeria-immune mice results in heightened protection against subsequent Listeria challenge. This protection was associated with bystander expansion of Listeria-specific CD8+ T cells and a bias in these cells toward a central memory T-cell phenotype with an enhanced capacity for gamma interferon production. We propose that splenomegaly, which is characteristic of visceral leishmaniasis and other tropical infections, may help promote heterologous immunity by resetting the size of the memory compartment during chronic infection.
International Archives of Allergy and Immunology | 2012
Tamara Etto; Carmela de Boer; Sara Prickett; Leanne M. Gardner; Astrid Voskamp; Janet M. Davies; Robyn E. O'Hehir; Jennifer M. Rolland
Background: Bahia grass pollen (BaGP) is a major cause of allergic rhinitis. Subcutaneous allergen-specific immunotherapy is effective for grass pollen allergy, but is unsuitable for patients with moderate to severe asthma due to the risk of anaphylaxis. T cell-reactive but IgE nonreactive peptides provide a safer treatment option. This study aimed to identify and characterize dominant CD4+ T cell epitope peptides of the major BaGP allergen, Pas n 1. Methods: Pas n 1-specific T cell lines generated from the peripheral blood of BaGP-allergic subjects were tested for proliferative and cytokine response to overlapping 20-mer Pas n 1 peptides. Cross-reactivity to homologous peptides from Lol p 1 and Cyn d 1 of Ryegrass and Bermuda grass pollen, respectively, was assessed using Pas n 1 peptide-specific T cell clones. MHC class II restriction of Pas n 1 peptide T cell recognition was determined by HLA blocking assays and peptide IgE reactivity tested by dot blotting. Results: Three Pas n 1 peptides showed dominant T cell reactivity; 15 of 18 (83%) patients responded to one or more of these peptides. T cell clones specific for dominant Pas n 1 peptides showed evidence of species-specific T cell reactivity as well as cross-reactivity with other group 1 grass pollen allergens. The dominant Pas n 1 T cell epitope peptides showed HLA binding diversity and were non-IgE reactive. Conclusions: The immunodominant T cell-reactive Pas n 1 peptides are candidates for safe immunotherapy for individuals, including those with asthma, who are allergic to Bahia and possibly other grass pollens.
Current Allergy and Asthma Reports | 2016
Robyn E. O’Hehir; Sara Prickett; Jennifer M. Rolland
Careful selection of dominant T cell epitope peptides of major allergens that display degeneracy for binding to a wide array of MHC class II molecules allows induction of clinical and immunological tolerance to allergen in a refined treatment strategy. From the original concept of peptide-induced T cell anergy arising from in vitro studies, proof-of-concept murine models and flourishing human trials followed. Current randomized, double-blind, placebo-controlled clinical trials of mixtures of T cell-reactive short allergen peptides or long contiguous overlapping peptides are encouraging with intradermal administration into non-inflamed skin a preferred delivery. Definitive immunological mechanisms are yet to be resolved but specific anergy, Th2 cell deletion, immune deviation, and Treg induction seem implicated. Significant efficacy, particularly with short treatment courses, in a range of aeroallergen therapies (cat, house dust mite, grass pollen) with inconsequential non-systemic adverse events likely heralds a new class of therapeutic for allergy, Synthetic Peptide Immuno-Regulatory Epitopes (SPIRE).