Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara S. K. Koenig is active.

Publication


Featured researches published by Sara S. K. Koenig.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Vaginal microbiome of reproductive-age women

Jacques Ravel; Pawel Gajer; Zaid Abdo; G. Maria Schneider; Sara S. K. Koenig; Stacey L. McCulle; Shara Karlebach; Reshma Gorle; Jennifer Russell; Carol O. Tacket; Rebecca M. Brotman; Catherine C. Davis; Kevin A. Ault; Ligia Peralta; Larry J. Forney

The means by which vaginal microbiomes help prevent urogenital diseases in women and maintain health are poorly understood. To gain insight into this, the vaginal bacterial communities of 396 asymptomatic North American women who represented four ethnic groups (white, black, Hispanic, and Asian) were sampled and the species composition characterized by pyrosequencing of barcoded 16S rRNA genes. The communities clustered into five groups: four were dominated by Lactobacillus iners, L. crispatus, L. gasseri, or L. jensenii, whereas the fifth had lower proportions of lactic acid bacteria and higher proportions of strictly anaerobic organisms, indicating that a potential key ecological function, the production of lactic acid, seems to be conserved in all communities. The proportions of each community group varied among the four ethnic groups, and these differences were statistically significant [χ2(10) = 36.8, P < 0.0001]. Moreover, the vaginal pH of women in different ethnic groups also differed and was higher in Hispanic (pH 5.0 ± 0.59) and black (pH 4.7 ± 1.04) women as compared with Asian (pH 4.4 ± 0.59) and white (pH 4.2 ± 0.3) women. Phylotypes with correlated relative abundances were found in all communities, and these patterns were associated with either high or low Nugent scores, which are used as a factor for the diagnosis of bacterial vaginosis. The inherent differences within and between women in different ethnic groups strongly argues for a more refined definition of the kinds of bacterial communities normally found in healthy women and the need to appreciate differences between individuals so they can be taken into account in risk assessment and disease diagnosis.


Science Translational Medicine | 2012

Temporal Dynamics of the Human Vaginal Microbiota

Pawel Gajer; Rebecca M. Brotman; Guoyun Bai; Joyce M. Sakamoto; Ursel M. E. Schütte; Xue Zhong; Sara S. K. Koenig; Li Fu; Zhanshan (Sam) Ma; Xia Zhou; Zaid Abdo; Larry J. Forney; Jacques Ravel

The vaginal microbiome is dynamic, varying over time in composition and function with implications for women’s health. What’s Up with Vaginal Microbes? The ability to properly identify women at risk of acquiring sexually transmitted infectious diseases or who might suffer from adverse obstetric sequelae is a critical first step in reducing their incidence and the unnecessary use of antibiotics. Currently, patients undergo a clinical examination of the vagina that includes measuring the pH and evaluating the amount and type of discharge and the presence of odor. These criteria are thought to be surrogates for the presence of an “abnormal” vaginal microbiota. Although these kinds of tests, done only once, could be used to diagnose conditions such as bacterial vaginosis, it is debatable whether they are accurate predictors of risk because little is known about how the composition and function of the vaginal microbiome changes over time. Previous studies have established that in healthy asymptomatic women, five types of vaginal microbiota exist that differ in the kinds of microbes they contain. It was thought that each type carries its own risks and particular response to environmental disturbances, such as sexual activity or hygiene practices. In an exciting new study, Gajer and colleagues now describe changes in the identity and abundance of bacteria in the vaginal communities of 32 women by analyzing vaginal samples obtained twice weekly over a 16-week period. The kinds of bacteria present in the samples were identified by classifying thousands of 16S rRNA gene sequences in each sample using high-throughput next-generation sequencing. The authors further characterized vaginal community function by determining the metabolites produced throughout the 16-week period. Gajer and colleagues found that there were five longitudinal patterns of change in vaginal microbial community composition. Moreover, in some women, the vaginal microbial community composition changed markedly and rapidly over time, whereas in others it was relatively stable. Using statistical modeling, the authors showed that the menstrual cycle influenced the stability of the vaginal communities. In many cases, the metabolite profiles indicated that vaginal community function was maintained despite changes in bacterial composition. Intervals of increased susceptibility to disease may occur because the vaginal microbiota varies over time. The authors envision that better knowledge of the causes and consequences of these changes to the host will lead to the development of new strategies to manage vaginal microbiomes in ways that promote health and minimize the use of antibiotics. Elucidating the factors that impinge on the stability of bacterial communities in the vagina may help in predicting the risk of diseases that affect women’s health. Here, we describe the temporal dynamics of the composition of vaginal bacterial communities in 32 reproductive-age women over a 16-week period. The analysis revealed the dynamics of five major classes of bacterial communities and showed that some communities change markedly over short time periods, whereas others are relatively stable. Modeling community stability using new quantitative measures indicates that deviation from stability correlates with time in the menstrual cycle, bacterial community composition, and sexual activity. The women studied are healthy; thus, it appears that neither variation in community composition per se nor higher levels of observed diversity (co-dominance) are necessarily indicative of dysbiosis.


PLOS ONE | 2012

Proof of Concept of Microbiome-Metabolome Analysis and Delayed Gluten Exposure on Celiac Disease Autoimmunity in Genetically At-Risk Infants

Maria Sellitto; Guoyun Bai; Gloria Serena; W. Florian Fricke; Craig Sturgeon; Pawel Gajer; James R. White; Sara S. K. Koenig; Joyce M. Sakamoto; Dustin Boothe; Rachel Gicquelais; Deborah Kryszak; Elaine L. Leonard Puppa; Carlo Catassi; Jacques Ravel; Alessio Fasano

Celiac disease (CD) is a unique autoimmune disorder in which the genetic factors (DQ2/DQ8) and the environmental trigger (gluten) are known and necessary but not sufficient for its development. Other environmental components contributing to CD are poorly understood. Studies suggest that aspects of gluten intake might influence the risk of CD occurrence and timing of its onset, i.e., the amount and quality of ingested gluten, together with the pattern of infant feeding and the age at which gluten is introduced in the diet. In this study, we hypothesize that the intestinal microbiota as a whole rather than specific infections dictates the switch from tolerance to immune response in genetically susceptible individuals. Using a sample of infants genetically at risk of CD, we characterized the longitudinal changes in the microbial communities that colonize infants from birth to 24 months and the impact of two patterns of gluten introduction (early vs. late) on the gut microbiota and metabolome, and the switch from gluten tolerance to immune response, including onset of CD autoimmunity. We show that infants genetically susceptible to CD who are exposed to gluten early mount an immune response against gluten and develop CD autoimmunity more frequently than at-risk infants in which gluten exposure is delayed until 12 months of age. The data, while derived from a relatively small number of subjects, suggest differences between the developing microbiota of infants with genetic predisposition for CD and the microbiota from infants with a non-selected genetic background, with an overall lack of bacteria of the phylum Bacteriodetes along with a high abundance of Firmicutes and microbiota that do not resemble that of adults even at 2 years of age. Furthermore, metabolomics analysis reveals potential biomarkers for the prediction of CD. This study constitutes a definite proof-of-principle that these combined genomic and metabolomic approaches will be key to deciphering the role of the gut microbiota on CD onset.


Journal of Bacteriology | 2011

Genome Sequences of the Biotechnologically Important Bacillus megaterium Strains QM B1551 and DSM319

Mark Eppinger; Boyke Bunk; Mitrick A. Johns; Janaka N. Edirisinghe; Kirthi K. Kutumbaka; Sara S. K. Koenig; Heather Huot Creasy; M. J. Rosovitz; David R. Riley; Sean C. Daugherty; Madeleine Martin; Liam D. H. Elbourne; Ian T. Paulsen; Rebekka Biedendieck; Christopher Braun; Scott Grayburn; Sourabh Dhingra; Vitaliy Lukyanchuk; Barbara Ball; Riaz Ul-Qamar; Jürgen Seibel; Erhard Bremer; Dieter Jahn; Jacques Ravel; Patricia S. Vary

Bacillus megaterium is deep-rooted in the Bacillus phylogeny, making it an evolutionarily key species and of particular importance in understanding genome evolution, dynamics, and plasticity in the bacilli. B. megaterium is a commercially available, nonpathogenic host for the biotechnological production of several substances, including vitamin B(12), penicillin acylase, and amylases. Here, we report the analysis of the first complete genome sequences of two important B. megaterium strains, the plasmidless strain DSM319 and QM B1551, which harbors seven indigenous plasmids. The 5.1-Mbp chromosome carries approximately 5,300 genes, while QM B1551 plasmids represent a combined 417 kb and 523 genes, one of the largest plasmid arrays sequenced in a single bacterial strain. We have documented extensive gene transfer between the plasmids and the chromosome. Each strain carries roughly 300 strain-specific chromosomal genes that account for differences in their experimentally confirmed phenotypes. B. megaterium is able to synthesize vitamin B(12) through an oxygen-independent adenosylcobalamin pathway, which together with other key energetic and metabolic pathways has now been fully reconstructed. Other novel genes include a second ftsZ gene, which may be responsible for the large cell size of members of this species, as well as genes for gas vesicles, a second β-galactosidase gene, and most but not all of the genes needed for genetic competence. Comprehensive analyses of the global Bacillus gene pool showed that only an asymmetric region around the origin of replication was syntenic across the genus. This appears to be a characteristic feature of the Bacillus spp. genome architecture and may be key to their sporulating lifestyle.


Journal of Clinical Microbiology | 2010

Comparison of Self-Collected and Physician-Collected Vaginal Swabs for Microbiome Analysis

Larry J. Forney; Pawel Gajer; Christopher J. Williams; G. Maria Schneider; Sara S. K. Koenig; Stacey L. McCulle; Shara Karlebach; Rebecca M. Brotman; Catherine C. Davis; Kevin A. Ault; Jacques Ravel

ABSTRACT To our knowledge, no data are available on whether the microbial species composition and abundance sampled with self-collected vaginal swabs are comparable to those of swabs collected by clinicians. Twenty healthy women were recruited to the study during a routine gynecological visit. Eligible women were between 18 and 40 years old with regular menstrual cycles. Participants self-collected a vaginal swab using a standardized protocol and then were examined by a physician, who collected an additional five swabs from the lateral wall of the mid-vagina. In this study, the self-collected and three physician-obtained swabs were analyzed and compared using terminal restriction fragment length polymorphism and sequence analyses of the 16S rRNA genes. Vaginal microbial community comparative statistical analyses of both T-RFLP and 16S rRNA gene sequence datasets revealed that self-collected vaginal swabs sampled the same microbial diversity as physician collected swabs of the mid-vagina. These findings enable large-scale, field-based studies of the vaginal microbiome.


Mbio | 2012

Twice-Daily Application of HIV Microbicides Alters the Vaginal Microbiota

Jacques Ravel; Pawel Gajer; Li Fu; Christine K. Mauck; Sara S. K. Koenig; Joyce M. Sakamoto; Alison A. Motsinger-Reif; Gustavo F. Doncel; Steven L. Zeichner

ABSTRACT Vaginal HIV microbicides offer great promise in preventing HIV transmission, but failures of phase 3 clinical trials, in which microbicide-treated subjects had an increased risk of HIV transmission, raised concerns about endpoints used to evaluate microbicide safety. A possible explanation for the increased transmission risk is that the agents shifted the vaginal bacterial community, resulting in loss of natural protection and enhanced HIV transmission susceptibility. We characterized vaginal microbiota, using pyrosequencing of bar-coded 16S rRNA gene fragments, in samples from 35 healthy, sexually abstinent female volunteer subjects (ages 18 to 50 years) with regular menses in a repeat phase 1 study of twice-daily application over 13.5 days of 1 of 3 gel products: a hydroxyethylcellulose (HEC)-based “universal” placebo (10 subjects), 6% cellulose sulfate (CS; 13 subjects), and 4% nonoxynol-9 (N-9; 12 subjects). We used mixed effects models inferred using Bayesian Markov chain Monte Carlo methods, which showed that treatment with active agents shifted the microbiota toward a community type lacking significant numbers of Lactobacillus spp. and dominated by strict anaerobes. This state of the vaginal microbiota was associated with a low or intermediate Nugent score and was not identical to bacterial vaginosis, an HIV transmission risk factor. The placebo arm contained a higher proportion of communities dominated by Lactobacillus spp., particularly L. crispatus, throughout treatment. The data suggest that molecular evaluation of microbicide effects on vaginal microbiota may be a critical endpoint that should be incorporated in early clinical assessment of microbicide candidates. IMPORTANCE Despite large prevention efforts, HIV transmission and acquisition rates remain unacceptably high. In developing countries, transmission mainly occurs through heterosexual intercourse, where women are significantly more vulnerable to infection than men. Vaginal microbicides are considered to be one of the most promising female-controlled products, in that women themselves insert the microbicides into the vagina to prevent HIV transmission during sexual intercourse. The failure of several microbicides in clinical trials has raised questions concerning the low in vivo efficacy of such anti-HIV molecules. This study was designed to gain insights into the failures of two microbicides by testing the hypothesis that the microbicides negatively affect a critical line of defense against HIV, the vaginal microbiota. The results suggest that in the early assessment of candidate microbicides, culture-independent evaluation of their effect on the vaginal microbiota should be considered and may constitute a critical endpoint. Despite large prevention efforts, HIV transmission and acquisition rates remain unacceptably high. In developing countries, transmission mainly occurs through heterosexual intercourse, where women are significantly more vulnerable to infection than men. Vaginal microbicides are considered to be one of the most promising female-controlled products, in that women themselves insert the microbicides into the vagina to prevent HIV transmission during sexual intercourse. The failure of several microbicides in clinical trials has raised questions concerning the low in vivo efficacy of such anti-HIV molecules. This study was designed to gain insights into the failures of two microbicides by testing the hypothesis that the microbicides negatively affect a critical line of defense against HIV, the vaginal microbiota. The results suggest that in the early assessment of candidate microbicides, culture-independent evaluation of their effect on the vaginal microbiota should be considered and may constitute a critical endpoint.


Mbio | 2014

Genomic Epidemiology of the Haitian Cholera Outbreak: a Single Introduction Followed by Rapid, Extensive, and Continued Spread Characterized the Onset of the Epidemic

Mark Eppinger; Talima Pearson; Sara S. K. Koenig; Ofori Pearson; Nathan Hicks; Sonia Agrawal; Fatemeh Sanjar; Kevin Galens; Sean C. Daugherty; Jonathan Crabtree; Rene S. Hendriksen; Lance B. Price; Bishnu Prasad Upadhyay; Geeta Shakya; Claire M. Fraser; Jacques Ravel; Paul Keim

ABSTRACT For centuries, cholera has been one of the most feared diseases. The causative agent Vibrio cholerae is a waterborne Gram-negative enteric pathogen eliciting a severe watery diarrheal disease. In October 2010, the seventh pandemic reached Haiti, a country that had not experienced cholera for more than a century. By using whole-genome sequence typing and mapping strategies of 116 serotype O1 strains from global sources, including 44 Haitian genomes, we present a detailed reconstructed evolutionary history of the seventh pandemic with a focus on the Haitian outbreak. We catalogued subtle genomic alterations at the nucleotide level in the genome core and architectural rearrangements from whole-genome map comparisons. Isolates closely related to the Haitian isolates caused several recent outbreaks in southern Asia. This study provides evidence for a single-source introduction of cholera from Nepal into Haiti followed by rapid, extensive, and continued clonal expansion. The phylogeographic patterns in both southern Asia and Haiti argue for the rapid dissemination of V. cholerae across the landscape necessitating real-time surveillance efforts to complement the whole-genome epidemiological analysis. As eradication efforts move forward, phylogeographic knowledge will be important for identifying persistent sources and monitoring success at regional levels. The results of molecular and epidemiological analyses of this outbreak suggest that an indigenous Haitian source of V. cholerae is unlikely and that an indigenous source has not contributed to the genomic evolution of this clade. IMPORTANCE In this genomic epidemiology study, we have applied high-resolution whole-genome-based sequence typing methodologies on a comprehensive set of genome sequences that have become available in the aftermath of the Haitian cholera epidemic. These sequence resources enabled us to reassess the degree of genomic heterogeneity within the Vibrio cholerae O1 serotype and to refine boundaries and evolutionary relationships. The established phylogenomic framework showed how outbreak isolates fit into the global phylogeographic patterns compared to a comprehensive globally and temporally diverse strain collection and provides strong molecular evidence that points to a nonindigenous source of the 2010 Haitian cholera outbreak and refines epidemiological standards used in outbreak investigations for outbreak inclusion/exclusion following the concept of genomic epidemiology. The generated phylogenomic data have major public health relevance in translating sequence-based information to assist in future diagnostic, epidemiological, surveillance, and forensic studies of cholera. In this genomic epidemiology study, we have applied high-resolution whole-genome-based sequence typing methodologies on a comprehensive set of genome sequences that have become available in the aftermath of the Haitian cholera epidemic. These sequence resources enabled us to reassess the degree of genomic heterogeneity within the Vibrio cholerae O1 serotype and to refine boundaries and evolutionary relationships. The established phylogenomic framework showed how outbreak isolates fit into the global phylogeographic patterns compared to a comprehensive globally and temporally diverse strain collection and provides strong molecular evidence that points to a nonindigenous source of the 2010 Haitian cholera outbreak and refines epidemiological standards used in outbreak investigations for outbreak inclusion/exclusion following the concept of genomic epidemiology. The generated phylogenomic data have major public health relevance in translating sequence-based information to assist in future diagnostic, epidemiological, surveillance, and forensic studies of cholera.


Frontiers in Microbiology | 2016

Whole genome sequencing for genomics-guided investigations of Escherichia coli O157:H7 outbreaks

Brigida Rusconi; Fatemeh Sanjar; Sara S. K. Koenig; Mark K. Mammel; Phillip I. Tarr; Mark Eppinger

Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and long-term evolution and can complement currently employed typing schemes for outbreak ex- and inclusion, diagnostics, surveillance, and forensic studies.


Fems Immunology and Medical Microbiology | 2015

Characterization of the pathogenome and phylogenomic classification of enteropathogenic Escherichia coli of the O157:non-H7 serotypes

Fatemeh Sanjar; Brigida Rusconi; Tracy H. Hazen; Sara S. K. Koenig; Mark K. Mammel; Peter Feng; David A. Rasko; Mark Eppinger

Escherichia coli of the O157 serogroup are comprised of a diverse collection of more than 100 O157:non-H7 serotypes that are found in the environment, animal reservoir and infected patients and some have been linked to severe outbreaks of human disease. Among these, the enteropathogenic E. coli O157:non-H7 serotypes carry virulence factors that are hallmarks of enterohemorrhagic E. coli, such as causing attaching and effacing lesions during human gastrointestinal tract infections. Given the shared virulence gene pool between O157:H7 and O157:non-H7 serotypes, our objective was to examine the prevalence of virulence traits of O157:non-H7 serotypes within and across their H-serotype and when compared to other E. coli pathovars. We sequenced six O157:non-H7 genomes complemented by four genomes from public repositories in an effort to determine their virulence state and genetic relatedness to the highly pathogenic enterohemorrhagic O157:H7 lineage and its ancestral O55:H7 serotype. Whole-genome-based phylogenomic analysis and molecular typing is indicative of a non-monophyletic origin of the heterogeneous O157:non-H7 serotypes that are only distantly related to the O157:H7 serotype. The availability of multiple genomes enables robust phylogenomic placement of these strains into their evolutionary context, and the assessment of the pathogenic potential of the O157:non-H7 strains in causing human disease.


Genome Announcements | 2014

Genome Sequence of Escherichia coli O157:H7 Strain 2886-75, Associated with the First Reported Case of Human Infection in the United States

Fatemeh Sanjar; Tracy H. Hazen; Sadiq M. Shah; Sara S. K. Koenig; Sonia Agrawal; Sean J. Daugherty; Lisa Sadzewicz; Luke J. Tallon; Mark K. Mammel; Peter Feng; Robert Söderlund; Phillip I. Tarr; Chitrita DebRoy; Edward G. Dudley; Thomas A. Cebula; Jacques Ravel; Claire M. Fraser; David A. Rasko; Mark Eppinger

ABSTRACT First identified in 1982 as a human pathogen, enterohemorrhagic Escherichia coli of the O157:H7 serotype is a major cause of food-borne acquired human infections. Here, we report the genome sequence of the first known strain of this serotype isolated in the United States.

Collaboration


Dive into the Sara S. K. Koenig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Eppinger

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Pawel Gajer

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fatemeh Sanjar

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Li Fu

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brigida Rusconi

University of Texas at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge