Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara T. Winokur is active.

Publication


Featured researches published by Sara T. Winokur.


Cell | 1994

Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia

Rita Shiang; Leslie M. Thompson; Ya-Zhen Zhu; Deanna Church; Thomas J. Fielder; Maureen Bocian; Sara T. Winokur; John J. Wasmuth

Achondroplasia (ACH) is the most common genetic form of dwarfism. This disorder is inherited as an autosomal dominant trait, although the majority of cases are sporadic. A gene for ACH was recently localized to 4p16.3 by linkage analyses. The ACH candidate region includes the gene encoding fibroblast growth factor receptor 3 (FGFR3), which was originally considered as a candidate for the Huntingtons disease gene. DNA studies revealed point mutations in the FGFR3 gene in ACH heterozygotes and homozygotes. The mutation on 15 of the 16 ACH-affected chromosomes was the same, a G-->A transition, at nucleotide 1138 of the cDNA. The mutation on the only ACH-affected chromosome 4 without the G-->A transition at nucleotide 1138 had a G-->C transversion at this same position. Both mutations result in the substitution of an arginine residue for a glycine at position 380 of the mature protein, which is in the transmembrane domain of FGFR3.


Cell Stem Cell | 2012

Induced Pluripotent Stem Cells from Patients with Huntington’s Disease : Show CAG Repeat-Expansion-Associated Phenotypes

Virginia B. Mattis; Soshana Svendsen; Allison D. Ebert; Clive N. Svendsen; Alvin R. King; Malcolm Casale; Sara T. Winokur; Gayani Batugedara; Marquis P. Vawter; Peter J. Donovan; Leslie F. Lock; Leslie M. Thompson; Yu Zhu; Elisa Fossale; Ranjit S. Atwal; Tammy Gillis; Jayalakshmi S. Mysore; Jian Hong Li; Ihn Sik Seong; Yiping Shen; Xiaoli Chen; Vanessa C. Wheeler; Marcy E. MacDonald; James F. Gusella; Sergey Akimov; Nicolas Arbez; Tarja Juopperi; Tamara Ratovitski; Jason H. Chiang; Woon Roung Kim

Huntingtons disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. Here, The HD Consortium reports the generation and characterization of 14 induced pluripotent stem cell (iPSC) lines from HD patients and controls. Microarray profiling revealed CAG-repeat-expansion-associated gene expression patterns that distinguish patient lines from controls, and early onset versus late onset HD. Differentiated HD neural cells showed disease-associated changes in electrophysiology, metabolism, cell adhesion, and ultimately cell death for lines with both medium and longer CAG repeat expansions. The longer repeat lines were however the most vulnerable to cellular stressors and BDNF withdrawal, as assessed using a range of assays across consortium laboratories. The HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a human stem cell platform for screening new candidate therapeutics.


Nature Genetics | 2003

Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy

Petra G.M. van Overveld; Richard Jlf Lemmers; Lodewijk A. Sandkuijl; Leo Enthoven; Sara T. Winokur; Floor Bakels; George W. Padberg; Gert-Jan B. van Ommen; Rune R. Frants; Silvère M. van der Maarel

The autosomal dominant myopathy facioscapulohumeral muscular dystrophy (FSHD1, OMIM 158900) is caused by contraction of the D4Z4 repeat array on 4qter. We show that this contraction causes marked hypomethylation of the contracted D4Z4 allele in individuals with FSHD1. Individuals with phenotypic FSHD1, who are clinically identical to FSHD1 but have an unaltered D4Z4, also have hypomethylation of D4Z4. These results strongly suggest that hypomethylation of D4Z4 is a key event in the cascade of epigenetic events causing FSHD1.


Proceedings of the National Academy of Sciences of the United States of America | 2007

DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1

Manjusha Dixit; Eugénie Ansseau; Alexandra Tassin; Sara T. Winokur; Rongye Shi; Hong Qian; Sébastien Sauvage; Christel Matteotti; Anne Marie Van Acker; Oberdan Leo; Denise A. Figlewicz; Marietta Barro; Dalila Laoudj-Chenivesse; Alexandra Belayew; Frédérique Coppée; Yi-Wen Chen

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder linked to contractions of the D4Z4 repeat array in the subtelomeric region of chromosome 4q. By comparing genome-wide gene expression data from muscle biopsies of patients with FSHD to those of 11 other neuromuscular disorders, paired-like homeodomain transcription factor 1 (PITX1) was found specifically up-regulated in patients with FSHD. In addition, we showed that the double homeobox 4 gene (DUX4) that maps within the D4Z4 repeat unit was up-regulated in patient myoblasts at both mRNA and protein level. We further showed that the DUX4 protein could activate transient expression of a luciferase reporter gene fused to the Pitx1 promoter as well as the endogenous Pitx1 gene in transfected C2C12 cells. In EMSAs, DUX4 specifically interacted with a 30-bp sequence 5′-CGGATGCTGTCTTCTAATTAGTTTGGACCC-3′ in the Pitx1 promoter. Mutations of the TAAT core affected Pitx1-LUC activation in C2C12 cells and DUX4 binding in vitro. Our results suggest that up-regulation of both DUX4 and PITX1 in FSHD muscles may play critical roles in the molecular mechanisms of the disease.


PLOS Genetics | 2009

Specific Loss of Histone H3 Lysine 9 Trimethylation and HP1γ/Cohesin Binding at D4Z4 Repeats Is Associated with Facioscapulohumeral Dystrophy (FSHD)

Weihua Zeng; Jessica C. de Greef; Yen Yun Chen; Richard Chien; Xiangduo Kong; Heather C. Gregson; Sara T. Winokur; April D. Pyle; Keith D. Robertson; John A. Schmiesing; Virginia E. Kimonis; Judit Balog; Rune R. Frants; Alexander R. Ball; Leslie F. Lock; Peter J. Donovan; Silvère M. van der Maarel; Kyoko Yokomori

Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed “phenotypic” FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4–specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)–treated cells. We found that SUV39H1–mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1γ and cohesin are co-recruited to D4Z4 in an H3K9me3–dependent and cell type–specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type–specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1γ/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis.


Human Molecular Genetics | 2009

RNA Transcripts, miRNA-sized Fragments, and Proteins Produced from D4Z4 Units: New Candidates for the Pathophysiology of Facioscapulohumeral Dystrophy

Lauren Snider; Amy Asawachaicharn; Ashlee E. Tyler; Linda N. Geng; Lisa M. Petek; Lisa Maves; Daniel G. Miller; Richard J.L.F. Lemmers; Sara T. Winokur; Rabi Tawil; Silvère M. van der Maarel; Galina N. Filippova; Stephen J. Tapscott

Deletion of a subset of the D4Z4 macrosatellite repeats in the subtelomeric region of chromosome 4q causes facioscapulohumeral muscular dystrophy (FSHD) when occurring on a specific haplotype of 4qter (4qA161). Several genes have been examined as candidates for causing FSHD, including the DUX4 homeobox gene in the D4Z4 repeat, but none have been definitively shown to cause the disease, nor has the full extent of transcripts from the D4Z4 region been carefully characterized. Using strand-specific RT-PCR, we have identified several sense and antisense transcripts originating from the 4q D4Z4 units in wild-type and FSHD muscle cells. Consistent with prior reports, we find that the DUX4 transcript from the last (most telomeric) D4Z4 unit is polyadenylated and has two introns in its 3-prime untranslated region. In addition, we show that this transcript generates (i) small si/miRNA-sized fragments, (ii) uncapped, polyadenylated 3-prime fragments that encode the conserved C-terminal portion of DUX4 and (iii) capped and polyadenylated mRNAs that contain the double-homeobox domain of DUX4 but splice-out the C-terminal portion. Transfection studies demonstrate that translation initiation at an internal methionine can produce the C-terminal polypeptide and developmental studies show that this peptide inhibits myogenesis at a step between MyoD transcription and the activation of MyoD target genes. Together, we have identified new sense and anti-sense RNA transcripts, novel mRNAs and mi/siRNA-sized RNA fragments generated from the D4Z4 units that are new candidates for the pathophysiology of FSHD.


Chromosome Research | 1994

The DNA rearrangement associated with facioscapulohumeral muscular dystrophy involves a heterochromatin-associated repetitive element: Implications for a role of chromatin structure in the pathogenesis of the disease

Sara T. Winokur; Ulla Bengtsson; Julie Feddersen; K. D. Mathews; Barbara Weiffenbach; Holly L. Bailey; Rachelle Markovich; Jeffrey C. Murray; John J. Wasmuth; Michael R. Altherr; Brian C. Schutte

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant form of muscular dystrophy. The FSHD locus has been linked to the most distal genetic markers on the long arm of chromosome 4. Recently, a probe was identified that detects anEcoRI fragment length polymorphism which segregates with the disease in most FSHD families. Within theEcoRI fragment lies a tandem array of 3.2 kb repeats. In several familial cases and four independent sporadic FSHD mutations, the variation in size of theEcoRI fragment was due to a decrease in copy number of the 3.2 kb repeats. To gain further insight into the relationship between the tandem array and FSHD, a single 3.2 kb repeat unit was characterized. Fluorescencein situ hybridization (FISH) demonstrates that the 3.2 kb repeat cross-hybridizes to several regions of heterochromatin in the human genome. In addition, DNA sequence analysis of the repeat reveals a region which is highly homologous to a previously identified family of heterochromatic repeats, LSau. FISH on interphase chromosomes demonstrates that the tandem array of 3.2 kb repeats lies within 215 kb of the 4q telomere. Together, these results suggest that the tandem array of 3.2 kb repeats, tightly linked to the FSHD locus, is contained in heterochromatin adjacent to the telomere. In addition, they are consistent with the hypothesis that the gene responsible for FSHD may be subjected to position effect variegation because of its proximity to telomeric heterochromatin.


Annals of Neurology | 2005

Variable hypomethylation of D4Z4 in facioscapulohumeral muscular dystrophy

Petra G.M. van Overveld; Leo Enthoven; Enzo Ricci; Monica Rossi; Luciano Felicetti; Marc Jeanpierre; Sara T. Winokur; Rune R. Frants; George W. Padberg; Silvère M. van der Maarel

Facioscapulohumeral muscular dystrophy (FSHD) progressively affects the facial, shoulder, and upper arm muscles and is associated with contractions of the polymorphic D4Z4 repeat array in 4q35. Recently, we demonstrated that FSHD alleles are hypomethylated at D4Z4. To study potential relationships between D4Z4 hypomethylation and both residual repeat size and clinical severity, we compared the clinical severity score with D4Z4 methylation in unrelated FSHD patients. Correcting the clinical severity score for age at examination improves the parameter to define clinical severity and provides further support for hypomethylation of FSHD alleles. However, a linear relationship between repeat size and clinical severity of the disease cannot be established. Interestingly, FSHD can be separated in two clinical severity classes: patients with residual repeat sizes of 10 to 20kb are severely affected and show pronounced D4Z4 hypomethylation. In contrast, patients with repeat sizes of 20 to 31kb show large interindividual variation in clinical severity and D4Z4 hypomethylation. Because the majority of familial FSHD cases are represented in this interval and considering the overt variation in clinical severity in these familial cases, it thus is imperative to develop comprehensive allele‐specific assays monitoring total D4Z4 methylation to investigate whether interindividual variation in D4Z4 methylation can be translated into a prognostic factor for clinical severity. Ann Neurol 2005;58:569–576


European Journal of Human Genetics | 2010

Analysis of allele-specific RNA transcription in FSHD by RNA-DNA FISH in single myonuclei

Peter S. Masny; On Ying A Chan; Jessica C. de Greef; Ulla Bengtsson; Melanie Ehrlich; Rabi Tawil; Leslie F. Lock; Jane E. Hewitt; Jennifer Stocksdale; Jorge H. Martin; Silvère M. van der Maarel; Sara T. Winokur

Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) is likely caused by epigenetic alterations in chromatin involving contraction of the D4Z4 repeat array near the telomere of chromosome 4q. The precise mechanism by which deletions of D4Z4 influence gene expression in FSHD is not yet resolved. Regulatory models include a cis effect on proximal gene transcription (position effect), DNA looping, non-coding RNA, nuclear localization and trans-effects. To directly test whether deletions of D4Z4 affect gene expression in cis, nascent RNA was examined in single myonuclei so that transcription from each allele could be measured independently. FSHD and control myotubes (differentiated myoblasts) were subjected to sequential RNA–DNA FISH. A total of 16 genes in the FSHD region (FRG2, TUBB4Q, FRG1, FAT1, F11, KLKB1, CYP4V2, TLR3, SORBS2, PDLIM3 (ALP), LRP2BP, ING2, SNX25, SLC25A4 (ANT1), HELT and IRF2) were examined for interallelic variation in RNA expression within individual myonuclei. Sequential DNA hybridization with a unique 4q35 chromosome probe was then applied to confirm the localization of nascent RNA to 4q. A D4Z4 probe, labeled with a third fluorochrome, distinguished between the deleted and normal allele in FSHD nuclei. Our data do not support an FSHD model in which contracted D4Z4 arrays induce altered transcription in cis from 4q35 genes, even for those genes (FRG1, FRG2 and SLC25A4 (ANT1)) for which such an effect has been proposed.


Molecular Immunology | 2000

Characterization of the murine homolog of C1qRP: identical cellular expression pattern, chromosomal location and functional activity of the human and murine C1qRP.

Tae Suk Kim; Minha Park; Ronald R. Nepomuceno; Gail Palmarini; Sara T. Winokur; Cheryl A Cotman; Ulla Bengtsson; Andrea J. Tenner

Human C1qR(P) is a highly glycosylated transmembrane protein that is the human C1q receptor/receptor component that in vitro mediates enhancement of Fc- and C3b-mediated phagocytosis. A human genomic clone and a murine genomic clone that is 73% identical in sequence with the coding region for human C1qR(P) cDNA have been isolated. Chromosomal localization of the human and murine gene demonstrates that these genes are syntenic. Murine cell lines of diverse myeloid origins are shown to respond to interaction of C1q with the enhancement of phagocytosis similar to that seen previously in human peripheral blood monocytes. Northern blot, RT-PCR, Western blot and FACS analyses demonstrated that mC1qR(P) is expressed in these murine myeloid cell lines, but not in a mouse epithelial cell line, similar to the cell type expression of the human gene product. A polyclonal antibody to a peptide sequence common to the deduced sequence from the both murine and human C1qR(P) inhibited the enhancement of phagocytosis response to C1q when cells were permeabilized to permit access of the antibody to the intracellular milieu. These data support the postulate that the identified murine and human genes are homologs, confirm the previously predicted intracellular location of the C-terminus of the molecule, and indicates the necessary role of this intracellular domain in transducing the signal that leads to enhancement of phagocytic function.

Collaboration


Dive into the Sara T. Winokur's collaboration.

Top Co-Authors

Avatar

Silvère M. van der Maarel

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael R. Altherr

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ulla Bengtsson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie F. Lock

University of California

View shared research outputs
Top Co-Authors

Avatar

Peter S. Masny

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge