Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sara Tezza is active.

Publication


Featured researches published by Sara Tezza.


Journal of The American Society of Nephrology | 2014

Role of Podocyte B7-1 in Diabetic Nephropathy

Paolo Fiorina; Andrea Vergani; Roberto Bassi; Monika A. Niewczas; Mehmet M. Altintas; Marcus G. Pezzolesi; Francesca D’Addio; Melissa Chin; Sara Tezza; Moufida Ben Nasr; Deborah Mattinzoli; Masami Ikehata; Domenico Corradi; Valérie Schumacher; Lisa Buvall; Chih-Chuan Yu; Jer-Ming Chang; Stefano La Rosa; Giovanna Finzi; Anna Solini; Flavio Vincenti; Maria Pia Rastaldi; Jochen Reiser; Andrzej S. Krolewski; Peter Mundel; Mohamed H. Sayegh

Podocyte injury and resulting albuminuria are hallmarks of diabetic nephropathy, but targeted therapies to halt or prevent these complications are currently not available. Here, we show that the immune-related molecule B7-1/CD80 is a critical mediator of podocyte injury in type 2 diabetic nephropathy. We report the induction of podocyte B7-1 in kidney biopsy specimens from patients with type 2 diabetes. Genetic and epidemiologic studies revealed the association of two single nucleotide polymorphisms at the B7-1 gene with diabetic nephropathy. Furthermore, increased levels of the soluble isoform of the B7-1 ligand CD28 correlated with the progression to ESRD in individuals with type 2 diabetes. In vitro, high glucose conditions prompted the phosphatidylinositol 3 kinase-dependent upregulation of B7-1 in podocytes, and the ectopic expression of B7-1 in podocytes increased apoptosis and induced disruption of the cytoskeleton that were reversed by the B7-1 inhibitor CTLA4-Ig. Podocyte expression of B7-1 was also induced in vivo in two murine models of diabetic nephropathy, and treatment with CTLA4-Ig prevented increased urinary albumin excretion and improved kidney pathology in these animals. Taken together, these results identify B7-1 inhibition as a potential therapeutic strategy for the prevention or treatment of diabetic nephropathy.


Diabetes | 2013

Effect of the Purinergic Inhibitor Oxidized-ATP in a Model of Islet Allograft Rejection

Andrea Vergani; Carmen Fotino; Francesca D’Addio; Sara Tezza; Michele Podetta; Francesca Gatti; Melissa Chin; Roberto Bassi; R. D. Molano; Domenico Corradi; Rita Gatti; Maria Elena Ferrero; Antonio Secchi; Fabio Grassi; Camillo Ricordi; Mohamed H. Sayegh; Paola Maffi; Antonello Pileggi; Paolo Fiorina

The lymphocytic ionotropic purinergic P2X receptors (P2X1R-P2X7R, or P2XRs) sense ATP released during cell damage-activation, thus regulating T-cell activation. We aim to define the role of P2XRs during islet allograft rejection and to establish a novel anti-P2XRs strategy to achieve long-term islet allograft function. Our data demonstrate that P2X1R and P2X7R are induced in islet allograft-infiltrating cells, that only P2X7R is increasingly expressed during alloimmune response, and that P2X1R is augmented in both allogeneic and syngeneic transplantation. In vivo short-term P2X7R targeting (using periodate-oxidized ATP [oATP]) delays islet allograft rejection, reduces the frequency of Th1/Th17 cells, and induces hyporesponsiveness toward donor antigens. oATP-treated mice displayed preserved islet grafts with reduced Th1 transcripts. P2X7R targeting and rapamycin synergized in inducing long-term islet function in 80% of transplanted mice and resulted in reshaping of the recipient immune system. In vitro P2X7R targeting using oATP reduced T-cell activation and diminished Th1/Th17 cytokine production. Peripheral blood mononuclear cells obtained from long-term islet-transplanted patients showed an increased percentage of P2X7R+CD4+ T cells compared with controls. The beneficial effects of oATP treatment revealed a role for the purinergic system in islet allograft rejection, and the targeting of P2X7R is a novel strategy to induce long-term islet allograft function.


Circulation | 2013

Long-Term Heart Transplant Survival by Targeting the Ionotropic Purinergic Receptor P2X7

Andrea Vergani; Sara Tezza; Francesca D'Addio; Carmen Fotino; Kaifeng Liu; Monika A. Niewczas; Roberto Bassi; R. Damaris Molano; Sonja Kleffel; Alessandra Petrelli; Antonio Soleti; Enrico Ammirati; Maria Frigerio; Gary A. Visner; Fabio Grassi; Maria Elena Ferrero; Domenico Corradi; Reza Abdi; Camillo Ricordi; Mohamed H. Sayegh; Antonello Pileggi; Paolo Fiorina

Background— Heart transplantation is a lifesaving procedure for patients with end-stage heart failure. Despite much effort and advances in the field, current immunosuppressive regimens are still associated with poor long-term cardiac allograft outcomes, and with the development of complications, including infections and malignancies, as well. The development of a novel, short-term, and effective immunomodulatory protocol will thus be an important achievement. The purine ATP, released during cell damage/activation, is sensed by the ionotropic purinergic receptor P2X7 (P2X7R) on lymphocytes and regulates T-cell activation. Novel clinical-grade P2X7R inhibitors are available, rendering the targeting of P2X7R a potential therapy in cardiac transplantation. Methods and Results— We analyzed P2X7R expression in patients and mice and P2X7R targeting in murine recipients in the context of cardiac transplantation. Our data demonstrate that P2X7R is specifically upregulated in graft-infiltrating lymphocytes in cardiac-transplanted humans and mice. Short-term P2X7R targeting with periodate-oxidized ATP promotes long-term cardiac transplant survival in 80% of murine recipients of a fully mismatched allograft. Long-term survival of cardiac transplants was associated with reduced T-cell activation, T-helper cell 1/T-helper cell 17 differentiation, and inhibition of STAT3 phosphorylation in T cells, thus leading to a reduced transplant infiltrate and coronaropathy. In vitro genetic upregulation of the P2X7R pathway was also shown to stimulate T-helper cell 1/T-helper cell 17 cell generation. Finally, P2X7R targeting halted the progression of coronaropathy in a murine model of chronic rejection as well. Conclusions— P2X7R targeting is a novel clinically relevant strategy to prolong cardiac transplant survival.


Cell Reports | 2015

ROCK-Isoform-Specific Polarization of Macrophages Associated with Age-Related Macular Degeneration

Souska Zandi; Shintaro Nakao; Kwang Hoon Chun; Paolo Fiorina; Dawei Sun; Ryoichi Arita; Ming Zhao; Enoch Kim; Olivier Schueller; Stewart Campbell; Mahdi Taher; Mark I. Melhorn; Alexander Schering; Francesca Gatti; Sara Tezza; Fang Xie; Andrea Vergani; Shigeo Yoshida; Keijiro Ishikawa; Muneo Yamaguchi; Fumiyuki Sasaki; Ruth Schmidt-Ullrich; Yasuaki Hata; Hiroshi Enaida; Mitsuko Yuzawa; Takehiko Yokomizo; Young-Bum Kim; Paul Sweetnam; Tatsuro Ishibashi; Ali Hafezi-Moghadam

Age is a major risk factor in age-related macular degeneration (AMD), but the underlying cause is unknown. We find increased Rho-associated kinase (ROCK) signaling and M2 characteristics in eyes of aged mice, revealing immune changes in aging. ROCK isoforms determine macrophage polarization into M1 and M2 subtypes. M2-like macrophages accumulated in AMD, but not in normal eyes, suggesting that these macrophages may be linked to macular degeneration. M2 macrophages injected into the mouse eye exacerbated choroidal neovascular lesions, while M1 macrophages ameliorated them, supporting a causal role for macrophage subtypes in AMD. Selective ROCK2 inhibition with a small molecule decreased M2-like macrophages and choroidal neovascularization. ROCK2 inhibition upregulated M1 markers without affecting macrophage recruitment, underlining the plasticity of these macrophages. These results reveal age-induced innate immune imbalance as underlying AMD pathogenesis. Targeting macrophage plasticity opens up new possibilities for more effective AMD treatment.


Science Translational Medicine | 2017

PD-L1 genetic overexpression or pharmacological restoration in hematopoietic stem and progenitor cells reverses autoimmune diabetes

Moufida Ben Nasr; Sara Tezza; Francesca D’Addio; Chiara Mameli; Vera Usuelli; Anna Maestroni; Domenico Corradi; Silvana Belletti; Luca Albarello; Gabriella Becchi; Gian Paolo Fadini; Christian Schuetz; James F. Markmann; Clive Wasserfall; Leonard I. Zon; Gian Vincenzo Zuccotti; Paolo Fiorina

Restoration of a PD-L1 defect in HSPCs reverses diabetes in NOD mice and thus may represent a potential cure for T1D. Stemming attacks on the pancreas In type 1 diabetes, autoreactive CD4 T cells attack and kill pancreatic β cells, disrupting insulin production. Many approaches have been taken to inhibit this process, but few have translated into real benefit for diabetic patients. Ben Nasr et al. demonstrate that hematopoietic stem and progenitor cells from NOD mice and diabetic patients express less PD-L1, which is a T cell inhibitory molecule. Induction of PD-L1 expression on stem cells reversed diabetes in NOD mice and inhibited human autoimmune responses in vitro. Either gene therapy or pharmacological modulation of PD-L1 on stem cells could be brought into the clinic, providing a new way to interrupt the autoimmune response and help people with diabetes. Immunologically based clinical trials performed thus far have failed to cure type 1 diabetes (T1D), in part because these approaches were nonspecific. Because the disease is driven by autoreactive CD4 T cells, which destroy β cells, transplantation of hematopoietic stem and progenitor cells (HSPCs) has been recently offered as a therapy for T1D. Our transcriptomic profiling of HSPCs revealed that these cells are deficient in programmed death ligand 1 (PD-L1), an important immune checkpoint, in the T1D nonobese diabetic (NOD) mouse model. Notably, the immunoregulatory molecule PD-L1 plays a determinant role in controlling/inhibiting activated T cells and thus maintains immune tolerance. Furthermore, our genome-wide and bioinformatic analysis revealed the existence of a network of microRNAs (miRNAs) controlling PD-L1 expression, and silencing one of key altered miRNAs restored PD-L1 expression in HSPCs. We therefore sought to determine whether restoration of this defect would cure T1D as an alternative to immunosuppression. Genetically engineered or pharmacologically modulated HSPCs overexpressing PD-L1 inhibited the autoimmune response in vitro, reverted diabetes in newly hyperglycemic NOD mice in vivo, and homed to the pancreas of hyperglycemic NOD mice. The PD-L1 expression defect was confirmed in human HSPCs in T1D patients as well, and pharmacologically modulated human HSPCs also inhibited the autoimmune response in vitro. Targeting a specific immune checkpoint defect in HSPCs thus may contribute to establishing a cure for T1D.


Cell Stem Cell | 2015

Circulating IGF-I and IGFBP3 Levels Control Human Colonic Stem Cell Function and Are Disrupted in Diabetic Enteropathy

Francesca D’Addio; Stefano La Rosa; Anna Maestroni; Peter Jung; Elena Orsenigo; Moufida Ben Nasr; Sara Tezza; Roberto Bassi; Giovanna Finzi; Alessandro Marando; Andrea Vergani; Roberto Frego; Luca Albarello; Annapaola Andolfo; Roberta Manuguerra; Edi Viale; Carlo Staudacher; Domenico Corradi; Eduard Batlle; David T. Breault; Antonio Secchi; Franco Folli; Paolo Fiorina

The role of circulating factors in regulating colonic stem cells (CoSCs) and colonic epithelial homeostasis is unclear. Individuals with long-standing type 1 diabetes (T1D) frequently have intestinal symptoms, termed diabetic enteropathy (DE), though its etiology is unknown. Here, we report that T1D patients with DE exhibit abnormalities in their intestinal mucosa and CoSCs, which fail to generate in vitro mini-guts. Proteomic profiling of T1D+DE patient serum revealed altered levels of insulin-like growth factor 1 (IGF-I) and its binding protein 3 (IGFBP3). IGFBP3 prevented in vitro growth of patient-derived organoids via binding its receptor TMEM219, in an IGF-I-independent manner, and disrupted in vivo CoSC function in a preclinical DE model. Restoration of normoglycemia in patients with long-standing T1D via kidney-pancreas transplantation or in diabetic mice by treatment with an ecto-TMEM219 recombinant protein normalized circulating IGF-I/IGFBP3 levels and reestablished CoSC homeostasis. These findings demonstrate that peripheral IGF-I/IGFBP3 controls CoSCs and their dysfunction in DE.


Diabetes | 2015

Interleukin-10+ Regulatory B Cells Arise Within Antigen-Experienced CD40+ B Cells to Maintain Tolerance to Islet Autoantigens

Sonja Kleffel; Andrea Vergani; Sara Tezza; Moufida Ben Nasr; Monika A. Niewczas; Susan Wong; Roberto Bassi; Francesca D’Addio; Tobias Schatton; Reza Abdi; Mark A. Atkinson; Mohamed H. Sayegh; Li Wen; Clive Wasserfall; Kevin C. O’Connor; Paolo Fiorina

Impaired regulatory B cell (Breg) responses are associated with several autoimmune diseases in humans; however, the role of Bregs in type 1 diabetes (T1D) remains unclear. We hypothesized that naturally occurring, interleukin-10 (IL-10)–producing Bregs maintain tolerance to islet autoantigens, and that hyperglycemic nonobese diabetic (NOD) mice and T1D patients lack these potent negative regulators. IgVH transcriptome analysis revealed that islet-infiltrating B cells in long-term normoglycemic (Lnglc) NOD, which are naturally protected from diabetes, are more antigen-experienced and possess more diverse B-cell receptor repertoires compared to those of hyperglycemic (Hglc) mice. Importantly, increased levels of Breg-promoting CD40+ B cells and IL-10–producing B cells were found within islets of Lnglc compared to Hglc NOD. Likewise, healthy individuals showed increased frequencies of both CD40+ and IL-10+ B cells compared to T1D patients. Rituximab-mediated B-cell depletion followed by adoptive transfer of B cells from Hglc mice induced hyperglycemia in Lnglc human CD20 transgenic NOD mouse models. Importantly, both murine and human IL-10+ B cells significantly abrogated T-cell–mediated responses to self- or islet-specific peptides ex vivo. Together, our data suggest that antigen-matured Bregs may maintain tolerance to islet autoantigens by selectively suppressing autoreactive T-cell responses, and that Hglc mice and individuals with T1D lack this population of Bregs.


American Journal of Transplantation | 2014

The Purinergic System in Allotransplantation

Andrea Vergani; Sara Tezza; Carmen Fotino; Gary A. Visner; Antonello Pileggi; Anil Chandraker; Paolo Fiorina

The purine nucleotide adenosine triphosphate (ATP) is a universal source of energy for any intracellular reaction. Under specific physiological or pathological conditions, ATP can be released into extracellular spaces, where it binds and activates the purinergic receptors system (i.e. P2X, P2Y and P1 receptors). Extracellular ATP (eATP) binds to P2X or P2Y receptors in immune cells, where it mediates proliferation, chemotaxis, cytokine release, antigen presentation and cytotoxicity. eATP is then hydrolyzed by ectonucleotidases into adenosine diphosphate (ADP), which activates P2Y receptors. Ectonucleotidases also hydrolyze ADP to adenosine monophosphate and adenosine, which binds P1 receptors. In contrast to P2X and P2Y receptors, P1 receptors exert mainly an inhibitory effect on the immune response. In transplantation, a prominent role has been demonstrated for the eATP/P2X7R axis; the targeting of this pathway in fact is associated with long‐term graft function and reduced graft versus host disease severity in murine models. Novel P2X receptor inhibitors are available for clinical use and are under assessment as immunomodulatory agents. In this review, we will focus on the relevance of the purinergic system and on the potential benefits of targeting this system in allograft rejection and tolerance.


Diabetes | 2011

IL-21 Is an Antitolerogenic Cytokine of the Late-Phase Alloimmune Response

Alessandra Petrelli; Michele Carvello; Andrea Vergani; Kang Mi Lee; Sara Tezza; Ming Du; Sonja Kleffel; Liu Chengwen; Bechara Mfarrej; Patrick Hwu; Antonio Secchi; Warren J. Leonard; Deborah Young; Mohamed H. Sayegh; James F. Markmann; Allan J. Zajac; Paolo Fiorina

OBJECTIVE Interleukin-21 (IL-21) is a proinflammatory cytokine that has been shown to affect Treg/Teff balance. However, the mechanism by which IL-21 orchestrates alloimmune response and interplays with Tregs is still unclear. RESEARCH DESIGN AND METHODS The interplay between IL-21/IL-21R signaling, FoxP3 expression, and Treg survival and function was evaluated in vitro in immunologically relevant assays and in vivo in allogenic and autoimmune models of islet transplantation. RESULTS IL-21R expression decreases on T cells and B cells in vitro and increases in the graft in vivo, while IL-21 levels increase in vitro and in vivo during anti-CD3/anti-CD28 stimulation/allostimulation in the late phase of the alloimmune response. In vitro, IL-21/IL-21R signaling (by using rmIL-21 or genetically modified CD4+ T cells [IL-21 pOrf plasmid–treated or hIL-21-Tg mice]) enhances the T-cell response during anti-CD3/anti-CD28 stimulation/allostimulation, prevents Treg generation, inhibits Treg function, induces Treg apoptosis, and reduces FoxP3 and FoxP3-dependent gene transcripts without affecting FoxP3 methylation status. In vivo targeting of IL-21/IL-21R expands intragraft and peripheral Tregs, promotes Treg neogenesis, and regulates the antidonor immune response, whereas IL-21/IL-21R signaling in Doxa-inducible ROSA-rtTA-IL-21-Tg mice expands Teffs and FoxP3− cells. Treatment with a combination of mIL-21R.Fc and CTLA4-Ig (an inhibitor of the early alloimmune response) leads to robust graft tolerance in a purely alloimmune setting and prolonged islet graft survival in NOD mice. CONCLUSIONS IL-21 interferes with different checkpoints of the FoxP3 Treg chain in the late phase of alloimmune response and, thus, acts as an antitolerogenic cytokine. Blockade of the IL-21/IL-21R pathway could be a precondition for tolerogenic protocols in transplantation.


Experimental Diabetes Research | 2012

Regenerative Therapies for Diabetic Microangiopathy

Roberto Bassi; Alessio Trevisani; Sara Tezza; Moufida Ben Nasr; Francesca Gatti; Andrea Vergani; Antonio Farina; Paolo Fiorina

Hyperglycaemia occurring in diabetes is responsible for accelerated arterial remodeling and atherosclerosis, affecting the macro- and the microcirculatory system. Vessel injury is mainly related to deregulation of glucose homeostasis and insulin/insulin-precursors production, generation of advanced glycation end-products, reduction in nitric oxide synthesis, and oxidative and reductive stress. It occurs both at extracellular level with increased calcium and matrix proteins deposition and at intracellular level, with abnormalities of intracellular pathways and increased cell death. Peripheral arterial disease, coronary heart disease, and ischemic stroke are the main causes of morbidity/mortality in diabetic patients representing a major clinical and economic issue. Pharmacological therapies, administration of growth factors, and stem cellular strategies are the most effective approaches and will be discussed in depth in this comprehensive review covering the regenerative therapies of diabetic microangiopathy.

Collaboration


Dive into the Sara Tezza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Vergani

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Francesca D’Addio

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Moufida Ben Nasr

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Roberto Bassi

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamed H. Sayegh

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Vera Usuelli

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Antonio Secchi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge