Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Ayling is active.

Publication


Featured researches published by Sarah Ayling.


Nature | 2012

A physical, genetic and functional sequence assembly of the barley genome

Klaus F. X. Mayer; Robbie Waugh; Peter Langridge; Timothy J. Close; Roger P. Wise; Andreas Graner; Takashi Matsumoto; Kazuhiro Sato; Alan H. Schulman; Ruvini Ariyadasa; Daniela Schulte; Naser Poursarebani; Ruonan Zhou; Burkhard Steuernagel; Martin Mascher; Uwe Scholz; Bu-Jun Shi; Kavitha Madishetty; Jan T. Svensson; Prasanna R. Bhat; Matthew J. Moscou; Josh Resnik; Gary J. Muehlbauer; Peter E. Hedley; Hui Liu; Jenny Morris; Zeev Frenkel; Avraham Korol; Hélène Bergès; Marius Felder

Barley (Hordeum vulgare L.) is among the world’s earliest domesticated and most important crop plants. It is diploid with a large haploid genome of 5.1 gigabases (Gb). Here we present an integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context. We developed a physical map of 4.98 Gb, with more than 3.90 Gb anchored to a high-resolution genetic map. Projecting a deep whole-genome shotgun assembly, complementary DNA and deep RNA sequence data onto this framework supports 79,379 transcript clusters, including 26,159 ‘high-confidence’ genes with homology support from other plant genomes. Abundant alternative splicing, premature termination codons and novel transcriptionally active regions suggest that post-transcriptional processing forms an important regulatory layer. Survey sequences from diverse accessions reveal a landscape of extensive single-nucleotide variation. Our data provide a platform for both genome-assisted research and enabling contemporary crop improvement.


Nature | 2017

A chromosome conformation capture ordered sequence of the barley genome

Martin Mascher; Heidrun Gundlach; Axel Himmelbach; Sebastian Beier; Sven O. Twardziok; Thomas Wicker; Volodymyr Radchuk; Christoph Dockter; Peter E. Hedley; Joanne Russell; Micha Bayer; Luke Ramsay; Hui Liu; Georg Haberer; Xiao-Qi Zhang; Qisen Zhang; Roberto A. Barrero; Lin Li; Marco Groth; Marius Felder; Alex Hastie; Hana Šimková; Helena Staňková; Jan Vrána; Saki Chan; María Muñoz-Amatriaín; Rachid Ounit; Steve Wanamaker; Daniel M. Bolser; Christian Colmsee

Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.


Plant Journal | 2013

Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond

Martin Mascher; Todd Richmond; Daniel J. Gerhardt; Axel Himmelbach; Leah Clissold; Dharanya Sampath; Sarah Ayling; Burkhard Steuernagel; Matthias Pfeifer; Mark D'Ascenzo; Eduard Akhunov; Peter E. Hedley; Ana M. Gonzales; Peter L. Morrell; Benjamin Kilian; Frank R. Blattner; Uwe Scholz; Klaus F. X. Mayer; Andrew J. Flavell; Gary J. Muehlbauer; Robbie Waugh; Jeffrey A. Jeddeloh; Nils Stein

Advanced resources for genome-assisted research in barley (Hordeum vulgare) including a whole-genome shotgun assembly and an integrated physical map have recently become available. These have made possible studies that aim to assess genetic diversity or to isolate single genes by whole-genome resequencing and in silico variant detection. However such an approach remains expensive given the 5 Gb size of the barley genome. Targeted sequencing of the mRNA-coding exome reduces barley genomic complexity more than 50-fold, thus dramatically reducing this heavy sequencing and analysis load. We have developed and employed an in-solution hybridization-based sequence capture platform to selectively enrich for a 61.6 megabase coding sequence target that includes predicted genes from the genome assembly of the cultivar Morex as well as publicly available full-length cDNAs and de novo assembled RNA-Seq consensus sequence contigs. The platform provides a highly specific capture with substantial and reproducible enrichment of targeted exons, both for cultivated barley and related species. We show that this exome capture platform provides a clear path towards a broader and deeper understanding of the natural variation residing in the mRNA-coding part of the barley genome and will thus constitute a valuable resource for applications such as mapping-by-sequencing and genetic diversity analyzes.


Genome Biology | 2013

Separating homeologs by phasing in the tetraploid wheat transcriptome

Ksenia V. Krasileva; Vince Buffalo; Paul Bailey; Stephen Pearce; Sarah Ayling; Facundo Tabbita; Marcelo A. Soria; Shichen Wang; Eduard Akhunov; Cristobal Uauy; Jorge Dubcovsky

BackgroundThe high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs.ResultsA total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing.ConclusionsOur study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Uncovering hidden variation in polyploid wheat

Ksenia V. Krasileva; Hans A. Vasquez-Gross; Tyson Howell; Paul Bailey; Francine Paraiso; Leah Clissold; James Simmonds; Ricardo H. Ramirez-Gonzalez; Xiaodong Wang; Philippa Borrill; Christine Fosker; Sarah Ayling; Andrew Phillips; Cristobal Uauy; Jorge Dubcovsky

Significance Pasta and bread wheat are polyploid species that carry multiple copies of each gene. Therefore, loss-of-function mutations in one gene copy are frequently masked by functional copies on other genomes. We sequenced the protein coding regions of 2,735 mutant lines and developed a public database including more than 10 million mutations. Researchers and breeders can search this database online, identify mutations in the different copies of their target gene, and request seeds to study gene function or improve wheat varieties. Mutations are being used to improve the nutritional value of wheat, increase the size of the wheat grains, and generate additional variability in flowering genes to improve wheat adaptation to new and changing environments. Comprehensive reverse genetic resources, which have been key to understanding gene function in diploid model organisms, are missing in many polyploid crops. Young polyploid species such as wheat, which was domesticated less than 10,000 y ago, have high levels of sequence identity among subgenomes that mask the effects of recessive alleles. Such redundancy reduces the probability of selection of favorable mutations during natural or human selection, but also allows wheat to tolerate high densities of induced mutations. Here we exploited this property to sequence and catalog more than 10 million mutations in the protein-coding regions of 2,735 mutant lines of tetraploid and hexaploid wheat. We detected, on average, 2,705 and 5,351 mutations per tetraploid and hexaploid line, respectively, which resulted in 35–40 mutations per kb in each population. With these mutation densities, we identified an average of 23–24 missense and truncation alleles per gene, with at least one truncation or deleterious missense mutation in more than 90% of the captured wheat genes per population. This public collection of mutant seed stocks and sequence data enables rapid identification of mutations in the different copies of the wheat genes, which can be combined to uncover previously hidden variation. Polyploidy is a central phenomenon in plant evolution, and many crop species have undergone recent genome duplication events. Therefore, the general strategy and methods developed herein can benefit other polyploid crops.


Scientific Reports | 2015

Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement.

Jose de Vega; Sarah Ayling; Matthew Hegarty; Dave Kudrna; Jose Luis Goicoechea; Åshild Ergon; Odd Arne Rognli; Charlotte Jones; Martin T. Swain; René Geurts; Chunting Lang; Klaus F. X. Mayer; Stephan Rössner; Steven Yates; Kathleen Webb; Iain S. Donnison; Giles E. D. Oldroyd; Rod A. Wing; Mario Caccamo; Wayne Powell; Michael T. Abberton; Leif Skøt

Red clover (Trifolium pratense L.) is a globally significant forage legume in pastoral livestock farming systems. It is an attractive component of grassland farming, because of its high yield and protein content, nutritional value and ability to fix atmospheric nitrogen. Enhancing its role further in sustainable agriculture requires genetic improvement of persistency, disease resistance, and tolerance to grazing. To help address these challenges, we have assembled a chromosome-scale reference genome for red clover. We observed large blocks of conserved synteny with Medicago truncatula and estimated that the two species diverged ~23 million years ago. Among the 40,868 annotated genes, we identified gene clusters involved in biochemical pathways of importance for forage quality and livestock nutrition. Genotyping by sequencing of a synthetic population of 86 genotypes show that the number of markers required for genomics-based breeding approaches is tractable, making red clover a suitable candidate for association studies and genomic selection.


Scientific Data | 2017

Construction of a map-based reference genome sequence for barley, Hordeum vulgare L

Sebastian Beier; Axel Himmelbach; Christian Colmsee; Xiao-Qi Zhang; Roberto A. Barrero; Qisen Zhang; Lin Li; Micha Bayer; Daniel M. Bolser; Marco Groth; Marius Felder; Alex Hastie; Hana Šimková; Helena Staňková; Jan Vrána; Saki Chan; María Muñoz-Amatriaín; Rachid Ounit; Steve Wanamaker; Thomas Schmutzer; Lala Aliyeva-Schnorr; Stefano Grasso; Jaakko Tanskanen; Dharanya Sampath; Darren Heavens; Sujie Cao; Brett Chapman; Fei Dai; Yong Han; Hua Li

Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. ‘Morex’ was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX).


Tropical Plant Biology | 2012

Information Resources for Cassava Research and Breeding

Sarah Ayling; Morag Ferguson; Steve Rounsley; Peter Kulakow

Cassava is a globally important food security and industrial crop produced for food, feed, starch and biofuel. Cassava is drought-tolerant and can grow in poor soils. Roots can be stored in the ground for long periods as part of intact growing plants, allowing flexible harvest times for poor farmers in the tropics. In addition, due to cassava’s inherently high starch content, it is a popular source of carbon for industrial purposes and increasingly biofuel. It is, however, relatively low in nutrients and susceptible to several pests and diseases, including attacks from whitefly, mealybug, green mite, cassava mosaic viruses and cassava brown streak viruses. A number of groups worldwide are working to improve cassava by conventional breeding, by molecular marker-aided breeding, and through the use of transgenic approaches. To facilitate the work of these groups, easy access to up-to-date and integrated information resources are essential to enable knowledge sharing and data mining. Here we review the information resources currently available to breeders and researchers and discuss future directions for the cassava community’s data integration and curation.


bioRxiv | 2014

Crowdsourced analysis of ash and ash dieback through the Open Ash Dieback project: A year 1 report on datasets and analyses contributed by a self-organising community.

Diane G. O. Saunders; Kentaro Yoshida; Christine Sambles; Rachel Glover; Bernardo Clavijo; Manuel Corpas; Daniel Bunting; Suomeng Dong; Matthew D. Clark; David Swarbreck; Sarah Ayling; Matthew Bashton; Steve Collin; Tsuyoshi Hosoya; Anne Edwards; Lisa Crossman; Graham J. Etherington; Joe Win; Liliana M. Cano; David J. Studholme; J. Allan Downie; Mario Caccamo; Sophien Kamoun; Daniel MacLean

Ash dieback is a fungal disease of ash trees caused by Hymenoscyphus pseudoalbidus that has swept across Europe in the last two decades and is a significant threat to the ash population. This emergent pathogen has been relatively poorly studied and little is known about its genetic make-up. In response to the arrival of this dangerous pathogen in the UK we took the unusual step of providing an open access database and initial sequence datasets to the scientific community for analysis prior to performing an analysis of our own. Our goal was to crowdsource genomic and other analyses and create a community analysing this pathogen. In this report on the evolution of the community and data and analysis obtained in the first year of this activity, we describe the nature and the volume of the contributions and reveal some preliminary insights into the genome and biology of H. pseudoalbidus that emerged. In particular our nascent community generated a first-pass genome assembly containing abundant collapsed AT-rich repeats indicating a typically complex genome structure. Our open science and crowdsourcing effort has brought a wealth of new knowledge about this emergent pathogen within a short time-frame. Our community endeavour highlights the positive impact that open, collaborative approaches can have on fast, responsive modern science.


Comparative and Functional Genomics | 2017

Whole-Genome Characteristics and Polymorphic Analysis of Vietnamese Rice Landraces as a Comprehensive Information Resource for Marker-Assisted Selection

Hien Trinh; Khoa Truong Nguyen; Lam Van Nguyen; Huy Quang Pham; Can Thu Huong; Tran Dang Xuan; La Hoang Anh; Mario Caccamo; Sarah Ayling; Nguyen Thuy Diep; Cuong Nguyen; Khuat Huu Trung; Tran Dang Khanh

Next generation sequencing technologies have provided numerous opportunities for application in the study of whole plant genomes. In this study, we present the sequencing and bioinformatic analyses of five typical rice landraces including three indica and two japonica with potential blast resistance. A total of 688.4 million 100 bp paired-end reads have yielded approximately 30-fold coverage to compare with the Nipponbare reference genome. Among them, a small number of reads were mapped to both chromosomes and organellar genomes. Over two million and eight hundred thousand single nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) in indica and japonica lines have been determined, which potentially have significant impacts on multiple transcripts of genes. SNP deserts, contiguous SNP-low regions, were found on chromosomes 1, 4, and 5 of all genomes of rice examined. Based on the distribution of SNPs per 100 kilobase pairs, the phylogenetic relationships among the landraces have been constructed. This is the first step towards revealing several salient features of rice genomes in Vietnam and providing significant information resources to further marker-assisted selection (MAS) in rice breeding programs.

Collaboration


Dive into the Sarah Ayling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel M. Bolser

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Javier Herrero

University College London

View shared research outputs
Top Co-Authors

Avatar

Leif Skøt

Aberystwyth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge