Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah B. Berman is active.

Publication


Featured researches published by Sarah B. Berman.


Journal of Neurochemistry | 2001

Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria : Implications for Parkinson's disease

Sarah B. Berman; Teresa G. Hastings

Abstract : Both reactive dopamine metabolites and mitochondrial dysfunction have been implicated in the neurodegeneration of Parkinson’s disease. Dopamine metabolites, dopamine quinone and reactive oxygen species, can directly alter protein function by oxidative modifications, and several mitochondrial proteins may be targets of this oxidative damage. In this study, we examined, using isolated brain mitochondria, whether dopamine oxidation products alter mitochondrial function. We found that exposure to dopamine quinone caused a large increase in mitochondrial resting state 4 respiration. This effect was prevented by GSH but not superoxide dismutase and catalase. In contrast, exposure to dopamine and monoamine oxidase‐generated hydrogen peroxide resulted in a decrease in active state 3 respiration. This inhibition was prevented by both pargyline and catalase. We also examined the effects of dopamine oxidation products on the opening of the mitochondrial permeability transition pore, which has been implicated in neuronal cell death. Dopamine oxidation to dopamine quinone caused a significant increase in swelling of brain and liver mitochondria. This was inhibited by both the pore inhibitor cyclosporin A and GSH, suggesting that swelling was due to pore opening and related to dopamine quinone formation. In contrast, dopamine and endogenous monoamine oxidase had no effect on mitochondrial swelling. These findings suggest that mitochondrial dysfunction induced by products of dopamine oxidation may be involved in neurodegenerative conditions such as Parkinson’s disease and methamphetamine‐induced neurotoxicity.


Journal of Neurochemistry | 2002

Modification of Dopamine Transporter Function: Effect of Reactive Oxygen Species and Dopamine

Sarah B. Berman; Michael J. Zigmond; Teresa G. Hastings

Abstract: Dopamine can oxidize to form reactive oxygen species and quinones, and we have previously shown that dopamine quinones bind covalently to cysteinyl residues on striatal proteins. The dopamine transporter is one of the proteins at risk for this modification, because it has a high affinity for dopamine and contains several cysteinyl residues. Therefore, we tested whether dopamine transport in rat striatal synaptosomes could be affected by generators of reactive oxygen species, including dopamine. Uptake of [3H]dopamine (250 nM) was inhibited by ascorbate (0.85 mM; −44%), and this inhibition was prevented by the iron chelator diethylenetriaminepentaacetic acid (1 mM), suggesting that ascorbate was acting as a prooxidant in the presence of iron. Preincubation with xanthine (500 µM) and xanthine oxidase (50 mU/ml) also reduced [3H]dopamine uptake (−76%). Preincubation with dopamine (100 µM) caused a 60% inhibition of subsequent [3H]dopamine uptake. This dopamine‐induced inhibition was attenuated by diethylenetriaminepentaacetic acid (1 mM), which can prevent iron‐catalyzed oxidation of dopamine during the preincubation, but was unaffected by the monoamine oxidase inhibitor pargyline (10 µM). None of these incubations caused a loss of membrane integrity as indicated by lactate dehydrogenase release. These findings suggest that reactive oxygen species and possibly dopamine quinones can modify dopamine transport function.


Journal of Cell Biology | 2009

Bcl-xL increases mitochondrial fission, fusion, and biomass in neurons

Sarah B. Berman; Ying Bei Chen; Bing Qi; J. Michael McCaffery; Edmund B. Rucker; Sandra Goebbels; Klaus-Armin Nave; Beth Arnold; Elizabeth A. Jonas; Fernando J. Pineda; J. Marie Hardwick

Mitochondrial fission and fusion are linked to synaptic activity in healthy neurons and are implicated in the regulation of apoptotic cell death in many cell types. We developed fluorescence microscopy and computational strategies to directly measure mitochondrial fission and fusion frequencies and their effects on mitochondrial morphology in cultured neurons. We found that the rate of fission exceeds the rate of fusion in healthy neuronal processes, and, therefore, the fission/fusion ratio alone is insufficient to explain mitochondrial morphology at steady state. This imbalance between fission and fusion is compensated by growth of mitochondrial organelles. Bcl-xL increases the rates of both fusion and fission, but more important for explaining the longer organelle morphology induced by Bcl-xL is its ability to increase mitochondrial biomass. Deficits in these Bcl-xL–dependent mechanisms may be critical in neuronal dysfunction during the earliest phases of neurodegeneration, long before commitment to cell death.


Human Molecular Genetics | 2011

Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization

Victor S. Van Laar; Beth Arnold; Steven J. Cassady; Charleen T. Chu; Edward A. Burton; Sarah B. Berman

Recent studies delineate a pathway involving familial Parkinsons disease (PD)-related proteins PINK1 and Parkin, in which PINK1-dependent mitochondrial accumulation of Parkin targets depolarized mitochondria towards degradation through mitophagy. The pathway has been primarily characterized in cells less dependent on mitochondria for energy production than neurons. Here we report that in neurons, unlike other cells, mitochondrial depolarization by carbonyl cyanide m-chlorophenyl hydrazone did not induce Parkin translocation to mitochondria or mitophagy. PINK1 overexpression increased basal Parkin accumulation on neuronal mitochondria, but did not sensitize them to depolarization-induced Parkin translocation. Our data suggest that bioenergetic differences between neurons and cultured cell lines contribute to these different responses. In HeLa cells utilizing usual glycolytic metabolism, mitochondrial depolarization robustly triggered Parkin-mitochondrial translocation, but this did not occur in HeLa cells forced into dependence on mitochondrial respiration. Declining ATP levels after mitochondrial depolarization correlated with the absence of induced Parkin-mitochondrial translocation in both HeLa cells and neurons. However, intervention allowing neurons to maintain ATP levels after mitochondrial depolarization only modestly increased Parkin recruitment to mitochondria, without evidence of increased mitophagy. These data suggest that changes in ATP levels are not the sole determinant of the different responses between neurons and other cell types, and imply that additional mechanisms regulate mitophagy in neurons. Since the Parkin-mitophagy pathway is heavily dependent on bioenergetic status, the unique metabolic properties of neurons likely influence the function of this pathway in the pathogenesis of PD.


Journal of Neurochemistry | 2002

Inhibition of Glutamate Transport in Synaptosomes by Dopamine Oxidation and Reactive Oxygen Species

Sarah B. Berman; Teresa G. Hastings

Abstract: Dopamine can form reactive oxygen species and other reactive metabolites that can modify proteins and other cellular constituents. In this study, we tested the effect of dopamine oxidation products, other generators of reactive oxygen species, and a sulfhydryl modifier on the function of glutamate transporter proteins. We also compared any effects with those on the dopamine transporter, a protein whose function we had previously shown to be inhibited by dopamine oxidation. Preincubation with the generators of reactive oxygen species, ascorbate (0.85 mM) or xanthine (500 µM) plus xanthine oxidase (25 mU/ml), inhibited the uptake of [3H]glutamate (10 µM) into rat striatal synaptosomes (−54 and −74%, respectively). The sulfhydryl‐modifying agent N‐ethylmaleimide (50–500 µM) also led to a dose‐dependent inhibition of [3H]glutamate uptake. Preincubation with dopamine (100 µM) under oxidizing conditions inhibited [3H]glutamate uptake by 25%. Exposure of synaptosomes to increasing amounts of dopamine quinone by enzymatically oxidizing dopamine with tyrosinase (2–50 U/ml) further inhibited [3H]glutamate uptake, an effect prevented by the addition of glutathione. The effects of free radical generators and dopamine oxidation on [3H]glutamate uptake were similar to the effects on [3H]dopamine uptake (250 nM). Our findings suggest that reactive oxygen species and dopamine oxidation products can modify glutamate transport function, which may have implications for neurodegenerative processes such as ischemia, methamphetamine‐induced toxicity, and Parkinsons disease.


Experimental Neurology | 2000

Quantitative Biochemical and Ultrastructural Comparison of Mitochondrial Permeability Transition in Isolated Brain and Liver Mitochondria: Evidence for Reduced Sensitivity of Brain Mitochondria

Sarah B. Berman; Simon C. Watkins; Teresa G. Hastings

Opening of the mitochondrial permeability transition pore has increasingly been implicated in excitotoxic, ischemic, and apoptotic cell death, as well as in several neurodegenerative disease processes. However, much of the work directly characterizing properties of the transition pore has been performed in isolated liver mitochondria. Because of suggestions of tissue-specific differences in pore properties, we directly compared isolated brain mitochondria with liver mitochondria and used three quantitative biochemical and ultrastructural measurements of permeability transition. We provide evidence that brain mitochondria do not readily undergo permeability transition upon exposure to conditions that rapidly induce the opening of the transition pore in liver mitochondria. Exposure of liver mitochondria to transition-inducing agents led to a large, cyclosporin A-inhibitable decrease in spectrophotometric absorbance, a loss of mitochondrial glutathione, and morphologic evidence of matrix swelling and disruption, as expected. However, we found that similarly treated brain mitochondria showed very little absorbance change and no loss of glutathione. The absence of response in brain was not simply due to structural limitations, since large-amplitude swelling and release of glutathione occurred when membrane pores unrelated to the transition pore were formed. Additionally, electron microscopy revealed that the majority of brain mitochondria appeared morphologically unchanged following treatment to induce permeability transition. These findings show that isolated brain mitochondria are more resistant to induction of permeability transition than mitochondria from liver, which may have important implications for the study of the mechanisms involved in neuronal cell death.


Experimental Neurology | 2009

Mitochondrial dynamics in Parkinson's disease

Victor S. Van Laar; Sarah B. Berman

The unique energy demands of neurons require well-orchestrated distribution and maintenance of mitochondria. Thus, dynamic properties of mitochondria, including fission, fusion, trafficking, biogenesis, and degradation, are critical to all cells, but may be particularly important in neurons. Dysfunction in mitochondrial dynamics has been linked to neuropathies and is increasingly being linked to several neurodegenerative diseases, but the evidence is particularly strong, and continuously accumulating, in Parkinsons disease (PD). The unique characteristics of neurons that degenerate in PD may predispose those neuronal populations to susceptibility to alterations in mitochondrial dynamics. In addition, evidence from PD-related toxins supports that mitochondrial fission, fusion, and transport may be involved in pathogenesis. Furthermore, rapidly increasing evidence suggests that two proteins linked to familial forms of the disease, parkin and PINK1, interact in a common pathway to regulate mitochondrial fission/fusion. Parkin may also play a role in maintaining mitochondrial homeostasis through targeting damaged mitochondria for mitophagy. Taken together, the current data suggests that mitochondrial dynamics may play a role in PD pathogenesis, and a better understanding of mitochondrial dynamics within the neuron may lead to future therapeutic treatments for PD, potentially aimed at some of the earliest pathogenic events.


Cell Death & Differentiation | 2008

Mitochondrial fission and fusion dynamics: the long and short of it

Sarah B. Berman; Fernando J. Pineda; J. M. Hardwick

Maintenance of functional mitochondria requires fusion and fission of these dynamic organelles. The proteins that regulate mitochondrial dynamics are now associated with a broad range of cellular functions. Mitochondrial fission and fusion are often viewed as a finely tuned balance within cells, yet an integrated and quantitative understanding of how these processes interact with each other and with other mitochondrial and cellular processes is not well formulated. Direct visual observation of mitochondrial fission and fusion events, together with computational approaches promise to provide new insight.


Neurobiology of Disease | 2013

The interplay of neuronal mitochondrial dynamics and bioenergetics: implications for Parkinson's disease.

Victor S. Van Laar; Sarah B. Berman

The dynamic properties of mitochondria (mitochondrial fission, fusion, transport biogenesis and degradation) are critical for neuronal function and health, and dysregulation of mitochondrial dynamics has been increasingly linked to the pathogenesis of Parkinsons disease (PD). Mitochondrial dynamics and bioenergetics are interconnected, and this is of particular importance in neurons, which have a unique bioenergetic profile due to their energetic dependence on mitochondria and specialized, compartmentalized energetic needs. In this review, we summarize the interplay of mitochondrial dynamics and bioenergetics, and its particular relevance for neurodegeneration. Evidence linking dysregulation of mitochondrial dynamics to PD is presented from both toxin and genetic models, including newly emerging details of how PD-relevant genes PTEN-induced kinase 1 (PINK1) and Parkin regulate fission, fusion, mitophagy and transport. Finally, we discuss how neuronal bioenergetics may impact PD-relevant regulation of mitochondrial dynamics, and possible implications for understanding the role of mitochondrial dynamics in PD.


Oncogene | 2006

Mitochondrial factors with dual roles in death and survival

Wen-Chih Cheng; Sarah B. Berman; Ivanovska I; Elizabeth A. Jonas; Lee Sj; Yingbei Chen; Leonard K. Kaczmarek; Fernando J. Pineda; J. M. Hardwick

At least in mammals, we have some understanding of how caspases facilitate mitochondria-mediated cell death, but the biochemical mechanisms by which other factors promote or inhibit programmed cell death are not understood. Moreover, most of these factors are only studied after treating cells with a death stimulus. A growing body of new evidence suggests that cell death regulators also have ‘day jobs’ in healthy cells. Even caspases, mitochondrial fission proteins and pro-death Bcl-2 family proteins appear to have normal cellular functions that promote cell survival. Here, we review some of the supporting evidence and stretch beyond the evidence to seek an understanding of the remaining questions.

Collaboration


Dive into the Sarah B. Berman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beth Arnold

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Eric McDade

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Oscar L. Lopez

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison Goate

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Anne M. Fagan

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Chengjie Xiong

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Daniel S. Marcus

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge