Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah B. Daly is active.

Publication


Featured researches published by Sarah B. Daly.


Journal of Clinical Oncology | 2009

Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study

Daniel Cilloni; Aline Renneville; Fabienne Hermitte; Robert Kerrin Hills; Sarah B. Daly; Jelena V. Jovanovic; Enrico Gottardi; Milena Fava; Susanne Schnittger; Tamara Weiss; Barbara Izzo; Josep Nomdedeu; Adrian van der Heijden; Bert A. van der Reijden; Joop H. Jansen; V H J van der Velden; Hans Beier Ommen; Claude Preudhomme; Giuseppe Saglio; David Grimwade

PURPOSE Risk stratification in acute myeloid leukemia (AML) is currently based on pretreatment characteristics. It remains to be established whether relapse risk can be better predicted through assessment of minimal residual disease (MRD). One proposed marker is the Wilms tumor gene WT1, which is overexpressed in most patients with AML, thus providing a putative target for immunotherapy, although in the absence of a standardized assay, its utility for MRD monitoring remains controversial. PATIENTS AND METHODS Nine published and in-house real-time quantitative polymerase chain reaction WT1 assays were systematically evaluated within the European LeukemiaNet; the best-performing assay was applied to diagnostic AML samples (n = 620), follow-up samples from 129 patients treated with intensive combination chemotherapy, and 204 normal peripheral blood (PB) and bone marrow (BM) controls. RESULTS Considering relative levels of expression detected in normal PB and BM, WT1 was sufficiently overexpressed to discriminate > or = 2-log reduction in transcripts in 46% and 13% of AML patients, according to the respective follow-up sample source. In this informative group, greater WT1 transcript reduction after induction predicted reduced relapse risk (hazard ratio, 0.54 per log reduction; 95% CI, 0.36 to 0.83; P = .004) that remained significant when adjusted for age, WBC count, and cytogenetics. Failure to reduce WT1 transcripts below the threshold limits defined in normal controls by the end of consolidation also predicted increased relapse risk (P = .004). CONCLUSION Application of a standardized WT1 assay provides independent prognostic information in AML, lending support to incorporation of early assessment of MRD to develop more robust risk scores, to enhance risk stratification, and to identify patients who may benefit from allogeneic transplantation.


Blood | 2012

Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial.

John A. Liu Yin; Michelle A. O'Brien; Robert Kerrin Hills; Sarah B. Daly; Keith Wheatley; Alan Kenneth Burnett

The clinical value of serial minimal residual disease (MRD) monitoring in core binding factor (CBF) acute myeloid leukemia (AML) by quantitative RT-PCR was prospectively assessed in 278 patients [163 with t(8;21) and 115 with inv(16)] entered in the United Kingdom MRC AML 15 trial. CBF transcripts were normalized to 10(5) ABL copies. At remission, after course 1 induction chemotherapy, a > 3 log reduction in RUNX1-RUNX1T1 transcripts in BM in t(8;21) patients and a > 10 CBFB-MYH11 copy number in peripheral blood (PB) in inv(16) patients were the most useful prognostic variables for relapse risk on multivariate analysis. MRD levels after consolidation (course 3) were also informative. During follow-up, cut-off MRD thresholds in BM and PB associated with a 100% relapse rate were identified: for t(8;21) patients BM > 500 copies, PB > 100 copies; for inv(16) patients, BM > 50 copies and PB > 10 copies. Rising MRD levels on serial monitoring accurately predicted hematologic relapse. During follow-up, PB sampling was equally informative as BM for MRD detection. We conclude that MRD monitoring by quantitative RT-PCR at specific time points in CBF AML allows identification of patients at high risk of relapse and could now be incorporated in clinical trials to evaluate the role of risk directed/preemptive therapy.


Nature Genetics | 2011

Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature

Tracy A. Briggs; Gillian I. Rice; Sarah B. Daly; Jill Urquhart; Hannah Gornall; Brigitte Bader-Meunier; Kannan Baskar; Shankar Baskar; Veronique Baudouin; Michael W. Beresford; Graeme C.M. Black; Rebecca J. Dearman; Francis de Zegher; Emily S. Foster; Camille Frances; Alison R. Hayman; Emma Hilton; Chantal Job-Deslandre; M. L. Kulkarni; Martine Le Merrer; Agnès Linglart; Simon C. Lovell; Kathrin Maurer; L. Musset; Vincent Navarro; Capucine Picard; Anne Puel; Frédéric Rieux-Laucat; Chaim M. Roifman; Sabine Scholl-Bürgi

We studied ten individuals from eight families showing features consistent with the immuno-osseous dysplasia spondyloenchondrodysplasia. Of particular note was the diverse spectrum of autoimmune phenotypes observed in these individuals (cases), including systemic lupus erythematosus, Sjögrens syndrome, hemolytic anemia, thrombocytopenia, hypothyroidism, inflammatory myositis, Raynauds disease and vitiligo. Haplotype data indicated the disease gene to be on chromosome 19p13, and linkage analysis yielded a combined multipoint log10 odds (LOD) score of 3.6. Sequencing of ACP5, encoding tartrate-resistant acid phosphatase, identified biallelic mutations in each of the cases studied, and in vivo testing confirmed a loss of expressed protein. All eight cases assayed showed elevated serum interferon alpha activity, and gene expression profiling in whole blood defined a type I interferon signature. Our findings reveal a previously unrecognized link between tartrate-resistant acid phosphatase activity and interferon metabolism and highlight the importance of type I interferon in the genesis of autoimmunity.


Nature Genetics | 2012

Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus

Beverley Anderson; Paul R. Kasher; Josephine Mayer; Marcin Szynkiewicz; Emma M. Jenkinson; Sanjeev Bhaskar; Jill Urquhart; Sarah B. Daly; Jonathan E. Dickerson; James O'Sullivan; Elisabeth Oppliger Leibundgut; Joanne Muter; Ghada M H Abdel-Salem; Riyana Babul-Hirji; Peter Baxter; Andrea Berger; Luisa Bonafé; Janice E Brunstom-Hernandez; Johannes A Buckard; David Chitayat; Wk Chong; Duccio Maria Cordelli; Patrick Ferreira; Joel Victor Fluss; Ewan H. Forrest; Emilio Franzoni; Caterina Garone; Simon Hammans; Gunnar Houge; Imelda Hughes

Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous γH2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the α-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-α primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.


American Journal of Human Genetics | 2011

Whole-Exome-Sequencing Identifies Mutations in Histone Acetyltransferase Gene KAT6B in Individuals with the Say-Barber-Biesecker Variant of Ohdo Syndrome

Jill Clayton-Smith; James O'Sullivan; Sarah B. Daly; Sanjeev Bhaskar; Ruth Day; Beverley Anderson; Anne K. Voss; Tim Thomas; Leslie G. Biesecker; Philip Smith; Alan Fryer; Kate Chandler; Bronwyn Kerr; May Tassabehji; Sally Ann Lynch; Małgorzata Krajewska-Walasek; Shane McKee; Janine Smith; Elizabeth Sweeney; Sahar Mansour; Shehla Mohammed; Dian Donnai; Graeme C.M. Black

Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS or Ohdo syndrome) is a multiple anomaly syndrome characterized by severe intellectual disability, blepharophimosis, and a mask-like facial appearance. A number of individuals with SBBYSS also have thyroid abnormalities and cleft palate. The condition usually occurs sporadically and is therefore presumed to be due in most cases to new dominant mutations. In individuals with SBBYSS, a whole-exome sequencing approach was used to demonstrate de novo protein-truncating mutations in the highly conserved histone acetyltransferase gene KAT6B (MYST4/MORF)) in three out of four individuals sequenced. Sanger sequencing was used to confirm truncating mutations of KAT6B, clustering in the final exon of the gene in all four individuals and in a further nine persons with typical SBBYSS. Where parental samples were available, the mutations were shown to have occurred de novo. During mammalian development KAT6B is upregulated specifically in the developing central nervous system, facial structures, and limb buds. The phenotypic features seen in the Qkf mouse, a hypomorphic Kat6b mutant, include small eyes, ventrally placed ears and long first digits that mirror the human phenotype. This is a further example of how perturbation of a protein involved in chromatin modification might give rise to a multisystem developmental disorder.


Arthritis & Rheumatism | 2013

Protein kinase Cδ deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation

Alexandre Belot; Paul R. Kasher; Eleanor W. Trotter; Anne Perrine Foray; Anne Laure Debaud; Gillian I. Rice; Marcin Szynkiewicz; Marie Thérèse Zabot; Isabelle Rouvet; Sanjeev Bhaskar; Sarah B. Daly; Jonathan E. Dickerson; Josephine Mayer; James O'Sullivan; Laurent Juillard; Jill Urquhart; Shameem Fawdar; Anna A. Marusiak; Natalie L. Stephenson; Bohdan Waszkowycz; Michael W. Beresford; Leslie G. Biesecker; Graeme C.M. Black; Céline René; Jean François Eliaou; Nicole Fabien; Bruno Ranchin; Pierre Cochat; Patrick M. Gaffney; Flore Rozenberg

OBJECTIVE Systemic lupus erythematosus (SLE) is a prototype autoimmune disease that is assumed to occur via a complex interplay of environmental and genetic factors. Rare causes of monogenic SLE have been described, providing unique insights into fundamental mechanisms of immune tolerance. The aim of this study was to identify the cause of an autosomal-recessive form of SLE. METHODS We studied 3 siblings with juvenile-onset SLE from 1 consanguineous kindred and used next-generation sequencing to identify mutations in the disease-associated gene. We performed extensive biochemical, immunologic, and functional assays to assess the impact of the identified mutations on B cell biology. RESULTS We identified a homozygous missense mutation in PRKCD, encoding protein kinase δ (PKCδ), in all 3 affected siblings. Mutation of PRKCD resulted in reduced expression and activity of the encoded protein PKCδ (involved in the deletion of autoreactive B cells), leading to resistance to B cell receptor- and calcium-dependent apoptosis and increased B cell proliferation. Thus, as for mice deficient in PKCδ, which exhibit an SLE phenotype and B cell expansion, we observed an increased number of immature B cells in the affected family members and a developmental shift toward naive B cells with an immature phenotype. CONCLUSION Our findings indicate that PKCδ is crucial in regulating B cell tolerance and preventing self-reactivity in humans, and that PKCδ deficiency represents a novel genetic defect of apoptosis leading to SLE.


Journal of Clinical Oncology | 2014

Germline Mutations in SUFU Cause Gorlin Syndrome–Associated Childhood Medulloblastoma and Redefine the Risk Associated With PTCH1 Mutations

Miriam J. Smith; Christian Beetz; Simon G Williams; Sanjeev Bhaskar; James O'Sullivan; Beverley Anderson; Sarah B. Daly; Jill Urquhart; Zaynab Bholah; Deemesh Oudit; Edmund Cheesman; Anna Kelsey; Martin McCabe; William G. Newman; D. Gareth Evans

PURPOSE Heterozygous germline PTCH1 mutations are causative of Gorlin syndrome (naevoid basal cell carcinoma), but detection rates > 70% have rarely been reported. We aimed to define the causative mutations in individuals with Gorlin syndrome without PTCH1 mutations. METHODS We undertook exome sequencing on lymphocyte DNA from four unrelated individuals from families with Gorlin syndrome with no PTCH1 mutations found by Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), or RNA analysis. RESULTS A germline heterozygous nonsense mutation in SUFU was identified in one of four exomes. Sanger sequencing of SUFU in 23 additional PTCH1-negative Gorlin syndrome families identified a SUFU mutation in a second family. Copy-number analysis of SUFU by MLPA revealed a large heterozygous deletion in a third family. All three SUFU-positive families fulfilled diagnostic criteria for Gorlin syndrome, although none had odontogenic jaw keratocysts. Each SUFU-positive family included a single case of medulloblastoma, whereas only two (1.7%) of 115 individuals with Gorlin syndrome and a PTCH1 mutation developed medulloblastoma. CONCLUSION We demonstrate convincing evidence that SUFU mutations can cause classical Gorlin syndrome. Our study redefines the risk of medulloblastoma in Gorlin syndrome, dependent on the underlying causative gene. Previous reports have found a 5% risk of medulloblastoma in Gorlin syndrome. We found a < 2% risk in PTCH1 mutation-positive individuals, with a risk up to 20× higher in SUFU mutation-positive individuals. Our data suggest childhood brain magnetic resonance imaging surveillance is justified in SUFU-related, but not PTCH1-related, Gorlin syndrome.


American Journal of Human Genetics | 2011

Exome sequencing identifies CCDC8 mutations in 3-M syndrome, suggesting that CCDC8 contributes in a pathway with CUL7 and OBSL1 to control human growth

Dan Hanson; Philip G. Murray; James O'Sullivan; Jill Urquhart; Sarah B. Daly; Sanjeev Bhaskar; Leslie G. Biesecker; Mars Skae; Claire Smith; Trevor Cole; Jeremy Kirk; Kate Chandler; Helen Kingston; Dian Donnai; Peter Clayton; Graeme C.M. Black

3-M syndrome, a primordial growth disorder, is associated with mutations in CUL7 and OBSL1. Exome sequencing now identifies mutations in CCDC8 as a cause of 3-M syndrome. CCDC8 is a widely expressed gene that is transcriptionally associated to CUL7 and OBSL1, and coimmunoprecipitation indicates a physical interaction between CCDC8 and OBSL1 but not CUL7. We propose that CUL7, OBSL1, and CCDC8 are members of a pathway controlling mammalian growth.


American Journal of Human Genetics | 2011

Mutations in PRDM5 in Brittle Cornea Syndrome Identify a Pathway Regulating Extracellular Matrix Development and Maintenance

Emma Burkitt Wright; Helen L. Spencer; Sarah B. Daly; Forbes D.C. Manson; Leo Zeef; Jill Urquhart; Nicoletta Zoppi; Richard Bonshek; Ioannis Tosounidis; Meyyammai Mohan; Colm Madden; Annabel Dodds; Kate Chandler; Siddharth Banka; Leon Au; Jill Clayton-Smith; Naz Khan; Leslie G. Biesecker; Meredith Wilson; Marianne Rohrbach; Marina Colombi; Cecilia Giunta; Graeme C.M. Black

Extreme corneal fragility and thinning, which have a high risk of catastrophic spontaneous rupture, are the cardinal features of brittle cornea syndrome (BCS), an autosomal-recessive generalized connective tissue disorder. Enucleation is frequently the only management option for this condition, resulting in blindness and psychosocial distress. Even when the cornea remains grossly intact, visual function could also be impaired by a high degree of myopia and keratoconus. Deafness is another common feature and results in combined sensory deprivation. Using autozygosity mapping, we identified mutations in PRDM5 in families with BCS. We demonstrate that regulation of expression of extracellular matrix components, particularly fibrillar collagens, by PRDM5 is a key molecular mechanism that underlies corneal fragility in BCS and controls normal corneal development and maintenance. ZNF469, encoding a zinc finger protein of hitherto undefined function, has been identified as a quantitative trait locus for central corneal thickness, and mutations in this gene have been demonstrated in Tunisian Jewish and Palestinian kindreds with BCS. We show that ZNF469 and PRDM5, two genes that when mutated cause BCS, participate in the same regulatory pathway.


Neurology | 2015

Mutations in LZTR1 add to the complex heterogeneity of schwannomatosis

Miriam J. Smith; Bertand Isidor; Christian Beetz; Simon G Williams; Sanjeev Bhaskar; Wilfrid Richer; James O'Sullivan; Beverly Anderson; Sarah B. Daly; Jill Urquhart; Alan Fryer; Cecilie F. Rustad; Samantha Mills; Amir Samii; Daniel du Plessis; Dorothy Halliday; Sebastien Barbarot; Franck Bourdeaut; William G. Newman; D. Gareth Evans

Objectives: We aimed to determine the proportion of individuals in our schwannomatosis cohort whose disease is associated with an LZTR1 mutation. Methods: We used exome sequencing, Sanger sequencing, and copy number analysis to screen 65 unrelated individuals with schwannomatosis who were negative for a germline NF2 or SMARCB1 mutation. We also screened samples from 39 patients with a unilateral vestibular schwannoma (UVS), plus at least one other schwannoma, but who did not have an identifiable germline or mosaic NF2 mutation. Results: We identified germline LZTR1 mutations in 6 of 16 patients (37.5%) with schwannomatosis who had at least one affected relative, 11 of 49 (22%) sporadic patients, and 2 of 39 patients with UVS in our cohort. Three germline mutation–positive patients in total had developed a UVS. Mosaicism was excluded in 3 patients without germline mutation in NF2, SMARCB1, or LZTR1 by mutation screening in 2 tumors from each. Conclusions: Our data confirm the relationship between mutations in LZTR1 and schwannomatosis. They indicate that germline mutations in LZTR1 confer an increased risk of vestibular schwannoma, providing further overlap with NF2, and that further causative genes for schwannomatosis remain to be identified.

Collaboration


Dive into the Sarah B. Daly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjeev Bhaskar

Central Manchester University Hospitals NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie G. Biesecker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge