Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah B. Ng is active.

Publication


Featured researches published by Sarah B. Ng.


Nature Reviews Genetics | 2011

Exome sequencing as a tool for Mendelian disease gene discovery

Michael J. Bamshad; Sarah B. Ng; Abigail W. Bigham; Holly K. Tabor; Mary J. Emond; Deborah A. Nickerson; Jay Shendure

Exome sequencing — the targeted sequencing of the subset of the human genome that is protein coding — is a powerful and cost-effective new tool for dissecting the genetic basis of diseases and traits that have proved to be intractable to conventional gene-discovery strategies. Over the past 2 years, experimental and analytical approaches relating to exome sequencing have established a rich framework for discovering the genes underlying unsolved Mendelian disorders. Additionally, exome sequencing is being adapted to explore the extent to which rare alleles explain the heritability of complex diseases and health-related traits. These advances also set the stage for applying exome and whole-genome sequencing to facilitate clinical diagnosis and personalized disease-risk profiling.


Nature Genetics | 2010

Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome

Sarah B. Ng; Abigail W. Bigham; Kati J. Buckingham; Mark C. Hannibal; Margaret J. McMillin; Heidi I. Gildersleeve; Anita E. Beck; Holly K. Tabor; Gregory M. Cooper; Mefford Hc; Choli Lee; Emily H. Turner; Joshua D. Smith; Mark J. Rieder; Koh-ichiro Yoshiura; Naomichi Matsumoto; Tohru Ohta; Norio Niikawa; Deborah A. Nickerson; Michael J. Bamshad; Jay Shendure

We demonstrate the successful application of exome sequencing to discover a gene for an autosomal dominant disorder, Kabuki syndrome (OMIM%147920). We subjected the exomes of ten unrelated probands to massively parallel sequencing. After filtering against existing SNP databases, there was no compelling candidate gene containing previously unknown variants in all affected individuals. Less stringent filtering criteria allowed for the presence of modest genetic heterogeneity or missing data but also identified multiple candidate genes. However, genotypic and phenotypic stratification highlighted MLL2, which encodes a Trithorax-group histone methyltransferase: seven probands had newly identified nonsense or frameshift mutations in this gene. Follow-up Sanger sequencing detected MLL2 mutations in two of the three remaining individuals with Kabuki syndrome (cases) and in 26 of 43 additional cases. In families where parental DNA was available, the mutation was confirmed to be de novo (n = 12) or transmitted (n = 2) in concordance with phenotype. Our results strongly suggest that mutations in MLL2 are a major cause of Kabuki syndrome.


Nature Genetics | 2011

Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations

Brian J. O'Roak; Pelagia Deriziotis; Choli Lee; Laura Vives; Jerrod J. Schwartz; Santhosh Girirajan; Emre Karakoc; Alexandra P. MacKenzie; Sarah B. Ng; Carl Baker; Mark J. Rieder; Deborah A. Nickerson; Raphael Bernier; Simon E. Fisher; Jay Shendure; Evan E. Eichler

Evidence for the etiology of autism spectrum disorders (ASDs) has consistently pointed to a strong genetic component complicated by substantial locus heterogeneity. We sequenced the exomes of 20 individuals with sporadic ASD (cases) and their parents, reasoning that these families would be enriched for de novo mutations of major effect. We identified 21 de novo mutations, 11 of which were protein altering. Protein-altering mutations were significantly enriched for changes at highly conserved residues. We identified potentially causative de novo events in 4 out of 20 probands, particularly among more severely affected individuals, in FOXP1, GRIN2B, SCN1A and LAMC3. In the FOXP1 mutation carrier, we also observed a rare inherited CNTNAP2 missense variant, and we provide functional support for a multi-hit model for disease risk. Our results show that trio-based exome sequencing is a powerful approach for identifying new candidate genes for ASDs and suggest that de novo mutations may contribute substantially to the genetic etiology of ASDs.


Nature Biotechnology | 2011

Haplotype-resolved genome sequencing of a Gujarati Indian individual

Jacob O. Kitzman; Alexandra P. MacKenzie; Andrew Adey; Joseph Hiatt; Rupali P Patwardhan; Peter H. Sudmant; Sarah B. Ng; Can Alkan; Ruolan Qiu; Evan E. Eichler; Jay Shendure

Haplotype information is essential to the complete description and interpretation of genomes, genetic diversity and genetic ancestry. Although individual human genome sequencing is increasingly routine, nearly all such genomes are unresolved with respect to haplotype. Here we combine the throughput of massively parallel sequencing with the contiguity information provided by large-insert cloning to experimentally determine the haplotype-resolved genome of a South Asian individual. A single fosmid library was split into a modest number of pools, each providing ∼3% physical coverage of the diploid genome. Sequencing of each pool yielded reads overwhelmingly derived from only one homologous chromosome at any given location. These data were combined with whole-genome shotgun sequence to directly phase 94% of ascertained heterozygous single nucleotide polymorphisms (SNPs) into long haplotype blocks (N50 of 386 kilobases (kbp)). This method also facilitates the analysis of structural variation, for example, to anchor novel insertions to specific locations and haplotypes.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers

Akash Kumar; Thomas A. White; Alexandra P. MacKenzie; Nigel Clegg; Choli Lee; Ruth Dumpit; Ilsa Coleman; Sarah B. Ng; Stephen J. Salipante; Mark J. Rieder; Deborah A. Nickerson; Eva Corey; Paul H. Lange; Colm Morrissey; Robert L. Vessella; Peter S. Nelson; Jay Shendure

To catalog protein-altering mutations that may drive the development of prostate cancers and their progression to metastatic disease systematically, we performed whole-exome sequencing of 23 prostate cancers derived from 16 different lethal metastatic tumors and three high-grade primary carcinomas. All tumors were propagated in mice as xenografts, designated the LuCaP series, to model phenotypic variation, such as responses to cancer-directed therapeutics. Although corresponding normal tissue was not available for most tumors, we were able to take advantage of increasingly deep catalogs of human genetic variation to remove most germline variants. On average, each tumor genome contained ∼200 novel nonsynonymous variants, of which the vast majority was specific to individual carcinomas. A subset of genes was recurrently altered across tumors derived from different individuals, including TP53, DLK2, GPC6, and SDF4. Unexpectedly, three prostate cancer genomes exhibited substantially higher mutation frequencies, with 2,000–4,000 novel coding variants per exome. A comparison of castration-resistant and castration-sensitive pairs of tumor lines derived from the same prostate cancer highlights mutations in the Wnt pathway as potentially contributing to the development of castration resistance. Collectively, our results indicate that point mutations arising in coding regions of advanced prostate cancers are common but, with notable exceptions, very few genes are mutated in a substantial fraction of tumors. We also report a previously undescribed subtype of prostate cancers exhibiting “hypermutated” genomes, with potential implications for resistance to cancer therapeutics. Our results also suggest that increasingly deep catalogs of human germline variation may challenge the necessity of sequencing matched tumor-normal pairs.


Nature Methods | 2009

Massively parallel exon capture and library-free resequencing across 16 genomes

Emily H. Turner; Choli Lee; Sarah B. Ng; Deborah A. Nickerson; Jay Shendure

To the Editor: The adoption of molecular inversion probes (MIPs) to massively parallel exon capture1 has been limited by representational and allelic bias. We describe modifications enabling simultaneous amplification and accurate shotgun sequencing of 50,000 exons. We also prove the scalability and accuracy of direct sequencing of MIP amplicons, which circumvents all shotgun library construction, while resequencing 1 megabase of coding sequence across 16 human genomes with >99% HapMap concordance.


Human Molecular Genetics | 2010

Massively parallel sequencing and rare disease.

Sarah B. Ng; Deborah A. Nickerson; Michael J. Bamshad; Jay Shendure

Massively parallel sequencing has enabled the rapid, systematic identification of variants on a large scale. This has, in turn, accelerated the pace of gene discovery and disease diagnosis on a molecular level and has the potential to revolutionize methods particularly for the analysis of Mendelian disease. Using massively parallel sequencing has enabled investigators to interrogate variants both in the context of linkage intervals and also on a genome-wide scale, in the absence of linkage information entirely. The primary challenge now is to distinguish between background polymorphisms and pathogenic mutations. Recently developed strategies for rare monogenic disorders have met with some early success. These strategies include filtering for potential causal variants based on frequency and function, and also ranking variants based on conservation scores and predicted deleteriousness to protein structure. Here, we review the recent literature in the use of high-throughput sequence data and its analysis in the discovery of causal mutations for rare disorders.


Annual Review of Genomics and Human Genetics | 2009

Methods for Genomic Partitioning

Emily H. Turner; Sarah B. Ng; Deborah A. Nickerson; Jay Shendure

The emergence of massively parallel DNA sequencing platforms has made resequencing an affordable approach to study genetic variation. However, the cost of whole genome resequencing remains too high to apply to large numbers of human samples. Genomic partitioning methods allow enrichment for regions of interest at a scale that is matched to the throughput of the new sequencing platforms. We review general categories of methods for genomic partitioning including multiplex PCR, capture-by-circularization, and capture-by-hybridization. Parameters that are relevant to the performance of any given method include multiplexity, specificity, uniformity, input requirements, scalability, and cost. The successful development of genomic partitioning strategies will be key to taking full advantage of massively parallel sequencing, at least until resequencing of complete mammalian genomes becomes widely affordable.


American Journal of Medical Genetics Part A | 2011

Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome.

Mark C. Hannibal; Kati J. Buckingham; Sarah B. Ng; Jeffrey E. Ming; Anita E. Beck; Margaret J. McMillin; Heidi I. Gildersleeve; Abigail W. Bigham; Holly K. Tabor; Mefford Hc; Joseph Cook; Koh-ichiro Yoshiura; Tadashi Matsumoto; Naomichi Matsumoto; Noriko Miyake; Hidefumi Tonoki; Kenji Naritomi; Tadashi Kaname; Toshiro Nagai; Hirofumi Ohashi; Kenji Kurosawa; Jia Woei Hou; Tohru Ohta; Deshung Liang; Akira Sudo; Colleen A. Morris; Siddharth Banka; Graeme C.M. Black; Jill Clayton-Smith; Deborah A. Nickerson

Kabuki syndrome is a rare, multiple malformation disorder characterized by a distinctive facial appearance, cardiac anomalies, skeletal abnormalities, and mild to moderate intellectual disability. Simplex cases make up the vast majority of the reported cases with Kabuki syndrome, but parent‐to‐child transmission in more than a half‐dozen instances indicates that it is an autosomal dominant disorder. We recently reported that Kabuki syndrome is caused by mutations in MLL2, a gene that encodes a Trithorax‐group histone methyltransferase, a protein important in the epigenetic control of active chromatin states. Here, we report on the screening of 110 families with Kabuki syndrome. MLL2 mutations were found in 81/110 (74%) of families. In simplex cases for which DNA was available from both parents, 25 mutations were confirmed to be de novo, while a transmitted MLL2 mutation was found in two of three familial cases. The majority of variants found to cause Kabuki syndrome were novel nonsense or frameshift mutations that are predicted to result in haploinsufficiency. The clinical characteristics of MLL2 mutation‐positive cases did not differ significantly from MLL2 mutation‐negative cases with the exception that renal anomalies were more common in MLL2 mutation‐positive cases. These results are important for understanding the phenotypic consequences of MLL2 mutations for individuals and their families as well as for providing a basis for the identification of additional genes for Kabuki syndrome.


BMC Genomics | 2011

Exome-wide DNA capture and next generation sequencing in domestic and wild species

Ted F. Cosart; Albano Beja-Pereira; Shanyuan Chen; Sarah B. Ng; Jay Shendure; Gordon Luikart

BackgroundGene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses.We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (Bos taurus) to capture (enrich for), and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison bison (wild bison). Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits.ResultsWe successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes.ConclusionsThis study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.

Collaboration


Dive into the Sarah B. Ng's collaboration.

Top Co-Authors

Avatar

Jay Shendure

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Choli Lee

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Mark J. Rieder

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Holly K. Tabor

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge