Sarah Bubenzer-Busch
RWTH Aachen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah Bubenzer-Busch.
European Neuropsychopharmacology | 2015
Katrin Helmbold; Mikhail Zvyagintsev; Brigitte Dahmen; Sarah Bubenzer-Busch; T.J. Gaber; Molly J. Crockett; Martin Klasen; Cristina L. Sánchez; Albrecht Eisert; Kerstin Konrad; Ute Habel; Beate Herpertz-Dahlmann; Florian Daniel Zepf
Diminished synthesis of the neurotransmitter serotonin (5-HT) has been linked to disrupted impulse control in aversive contexts. However, the neural correlates underlying a serotonergic modulation of female impulsivity remain unclear. The present study investigated punishment-induced inhibition in healthy young women. Eighteen healthy female subjects (aged 20-31) participated in a double-blinded, counterbalanced, placebo-controlled, within subjects, repeated measures study. They were assessed on two randomly assigned occasions that were controlled for menstrual cycle phase. In a randomized order, one day, acute tryptophan depletion (ATD) was used to reduce 5-HT synthesis in the brain. On the other day, participants received a tryptophan-balanced amino acid load (BAL) as a control condition. Three hours after administration of ATD/BAL, neural activity was recorded during a modified Go/No-Go task implementing reward or punishment processes using functional magnetic resonance imaging (fMRI). Neural activation during No-Go trials in punishment conditions after BAL versus ATD administration correlated positively with the magnitude of central 5-HT depletion in the ventral and subgenual anterior cingulate cortices (ACC). Furthermore, neural activation in the medial orbitofrontal cortex (mOFC) and the dorsal ACC correlated positively with trait impulsivity. The results indicate reduced neural sensitivity to punishment after short-term depletion of 5-HT in brain areas related to emotion regulation (subgenual ACC) increasing with depletion magnitude and in brain areas related to appraisal and expression of emotions (mOFC and dorsal ACC), increasing with trait impulsivity. This suggests a serotonergic modulation of neural circuits related to emotion regulation, impulsive behavior, and punishment processing in females.
Amino Acids | 2015
Caroline Sarah Biskup; T.J. Gaber; Katrin Helmbold; Sarah Bubenzer-Busch; Florian Daniel Zepf
Imbalances of neurotransmitter systems, particularly serotonin (5-HT) and dopamine (DA), are known to play an essential role in many neuropsychiatric disorders. The transient manipulation of such systems through the alteration of their amino acid precursors is a well-known research tool. Among these methods are alterations of tryptophan, the essential amino acid (AA) precursor of 5-HT, as well as manipulations of tyrosine and phenylalanine, the AA precursors of DA, which can be metabolized into norepinephrine and subsequently into epinephrine. These systems can be loaded by applying a large dose of these AAs or depleted by applying an amino acid mixture lacking the respective AAs serving as precursors. Functional neuroimaging has given insights into differential brain activation patterns and functions depending on the tasks performed, pharmacological treatments or specific disorders. Such research has shed light on the function of many brain areas as well as their interactions. The combination of AA challenge approaches with neuroimaging techniques has been subject of numerous studies. Overall, the studies conducted in this particular field of research have shown that AA challenge techniques are valid and effective research tools that allow the investigation of serotonergic and dopaminergic systems without causing serious side effects or long-term damage to the subjects. In this review, we will present an overview of the results obtained so far and discuss the implications of these findings as well as open questions that remain to be answered.
Acta Psychiatrica Scandinavica | 2016
Sarah Bubenzer-Busch; Beate Herpertz-Dahlmann; Bojana Kuzmanovic; T.J. Gaber; Katrin Helmbold; M.G. Ullisch; D. Baurmann; Simon B. Eickhoff; Gereon R. Fink; Florian Daniel Zepf
Attention deficit hyperactivity disorder (ADHD) is often linked with impulsive and aggressive behaviour, indexed by high comorbidity rates between ADHD and disruptive behaviour disorders (DBD). The present study aimed to investigate underlying neural activity of reactive aggression in children with ADHD and comorbid DBD using functional neuroimaging techniques (fMRI).
Food & Nutrition Research | 2015
Patricia Hildebrand; Werner Königschulte; T.J. Gaber; Sarah Bubenzer-Busch; Katrin Helmbold; Caroline Sarah Biskup; Karl-Josef Langen; Gereon R. Fink; Florian Daniel Zepf
Background The synthesis of the neurotransmitters serotonin (5-HT) and dopamine (DA) in the brain can be directly altered by dietary manipulation of their relevant precursor amino acids (AA). There is evidence that altered serotonergic and dopaminergic neurotransmission are both associated with impaired attentional control. Specifically, phasic alertness is one specific aspect of attention that has been linked to changes in 5-HT and DA availability in different neurocircuitries related to attentional processes. The present study investigated the impact of short-term reductions in central nervous system 5-HT and DA synthesis, which was achieved by dietary depletion of the relevant precursor AA, on phasic alertness in healthy adult volunteers; body weight–adapted dietary tryptophan and phenylalanine–tyrosine depletion (PTD) techniques were used. Methods The study employed a double-blind between-subject design. Fifty healthy male and female subjects were allocated to three groups in a randomized and counterbalanced manner and received three different dietary challenge conditions: acute tryptophan depletion (ATD, for the depletion of 5-HT; N=16), PTD (for the depletion of DA; N=17), and a balanced AA load (BAL; N=17), which served as a control condition. Three hours after challenge intake (ATD/PTD/BAL), phasic alertness was assessed using a standardized test battery for attentional performance (TAP). Blood samples for AA level analyses were obtained at baseline and 360 min after the challenge intake. Results Overall, there were no significant differences in phasic alertness for the different challenge conditions. Regarding PTD administration, a positive correlation between the reaction times and the DA-related depletion magnitude was detected via the lower plasma tyrosine levels and the slow reaction times of the first run of the task. In contrast, higher tryptophan concentrations were associated with slower reaction times in the fourth run of the task in the same challenge group. Conclusion The present study is the first to demonstrate preliminary data that support an association between decreased central nervous system DA synthesis, which was achieved by dietary depletion strategies, and slower reaction times in specific runs of a task designed to assess phasic alertness in healthy adult volunteers; these findings are consistent with previous evidence that links phasic alertness with dopaminergic neurotransmission. A lack of significant differences between the three groups could be due to compensatory mechanisms and the limited sample size, as well as the dietary challenge procedures administered to healthy participants and the strict exclusion criteria used. The potential underlying neurochemical processes related to phasic alertness should be the subject of further investigations.
Acta Psychiatrica Scandinavica | 2016
Caroline Sarah Biskup; Katrin Helmbold; D. Baurmann; Martin Klasen; T.J. Gaber; Sarah Bubenzer-Busch; Werner Königschulte; Gereon R. Fink; Florian Daniel Zepf
Alterations of the default mode network (DMN) have been described in patients with neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), and the neurotransmitter serotonin (5‐HT) is known to modulate DMN activity. This study aimed to explore the role of 5‐HT on the DMN and its functional connectivity (FC) in young patients with ADHD.
Food & Nutrition Research | 2015
T.J. Gaber; V. L. S. Dingerkus; Molly J. Crockett; Sarah Bubenzer-Busch; Katrin Helmbold; Cristina L. Sánchez; Brigitte Dahmen; Beate Herpertz-Dahlmann; Florian Daniel Zepf
Background Alterations in serotonergic (5-HT) neurotransmission are thought to play a decisive role in affective disorders and impulse control. Objective This study aims to reproduce and extend previous findings on the effects of acute tryptophan depletion (ATD) and subsequently diminished central 5-HT synthesis in a reinforced categorization task using a refined body weight–adjusted depletion protocol. Design Twenty-four young healthy adults (12 females, mean age [SD]=25.3 [2.1] years) were subjected to a double-blind within-subject crossover design. Each subject was administered both an ATD challenge and a balanced amino acid load (BAL) in two separate sessions in randomized order. Punishment-related behavioral inhibition was assessed using a forced choice go/no-go task that incorporated a variable payoff schedule. Results Administration of ATD resulted in significant reductions in TRP measured in peripheral blood samples, indicating reductions of TRP influx across the blood–brain barrier and related brain 5-HT synthesis. Overall accuracy and response time performance were improved after ATD administration. The ability to adjust behavioral responses to aversive outcome magnitudes and behavioral adjustments following error contingent punishment remained intact after decreased brain 5-HT synthesis. A previously observed dissociation effect of ATD on punishment-induced inhibition was not observed. Conclusions Our results suggest that neurodietary challenges with ATD Moja–De have no detrimental effects on task performance and punishment-related inhibition in healthy adults.
Journal of Neural Transmission | 2015
Florian Daniel Zepf; V. L. S. Dingerkus; Katrin Helmbold; Sarah Bubenzer-Busch; Caroline Sarah Biskup; Beate Herpertz-Dahlmann; Michael Schaab; J. Kratzsch; Albrecht Eisert; Lothar Rink; Ulrich Hagenah; T.J. Gaber
Serotonin (5-HT) and the hormone leptin have been linked to the underlying neurobiology of appetite regulation with evidence coming from animal and cellular research, but direct evidence linking these two pathways in humans is lacking. We examined the effects of reduced brain 5-HT synthesis due to acute tryptophan depletion (ATD) on levels of soluble leptin receptor (sOb-R), the main high-affinity leptin binding protein, in healthy adults using an exploratory approach. Women, but not men, showed reduced sOb-R concentrations after ATD administration. With females showing reduced baseline levels of central 5-HT synthesis compared to males diminished brain 5-HT synthesis affected the leptin axis through the sOb-R in females, thereby potentially influencing their vulnerability to dysfunctional appetite regulation and co-morbid mood symptoms.
Nutrients | 2018
Janice Wong; Hugo A.E. Morandini; V. L. S. Dingerkus; T.J. Gaber; Kevin C. Runions; Pradeep Rao; Simone Mahfouda; Katrin Helmbold; Sarah Bubenzer-Busch; Rebecca Koenemann; Richard M. Stewart; Florian Daniel Zepf
Central nervous serotonin (5-HT) can influence behaviour and neuropsychiatric disorders. Evidence from animal models suggest that lowered levels of neuropeptide Y (NPY) may have similar effects, although it is currently unknown whether decreased central nervous 5-HT impact NPY concentrations. Given that the production of NPY is dependent on the essential amino acid methionine (MET), it is imperative to account for the presence of MET in such investigations. Hence, this study sought to examine the effects of acute tryptophan depletion (ATD; a dietary procedure that temporarily lowers central nervous 5-HT synthesis) on serum concentrations of NPY, whilst using the potential renal acid load indicator (PRAL) to control for levels of MET. In a double-blind repeated measures design, 24 adult humans randomly received an AA-load lacking in TRP (ATD) on one occasion, and a balanced control mixture with TRP (BAL) on a second occasion, both with a PRAL of nearly 47.3 mEq of MET. Blood samples were obtained at 90, 180, and 240 min after each of the AA challenges. ATD, and therefore, diminished substrate availability for brain 5-HT synthesis did not lead to significant changes in serum NPY concentrations over time, compared to BAL, under an acute acidotic stimulus.
Neuropsychiatric Disease and Treatment | 2017
Johanna S Albrecht; Sarah Bubenzer-Busch; Anne Gallien; Eva Lotte Knospe; T.J. Gaber; Florian Daniel Zepf
Objective The aim of this approach was to conduct a structured electroencephalography-based neurofeedback training program for children and adolescents with attention-deficit hyperactivity disorder (ADHD) using slow cortical potentials with an intensive first (almost daily sessions) and second phase of training (two sessions per week) and to assess aspects of attentional performance. Patients and methods A total of 24 young patients with ADHD participated in the 20-session training program. During phase I of training (2 weeks, 10 sessions), participants were trained on weekdays. During phase II, neurofeedback training occurred twice per week (5 weeks). The patients’ inattention problems were measured at three assessment time points before (pre, T0) and after (post, T1) the training and at a 6-month follow-up (T2); the assessments included neuropsychological tests (Alertness and Divided Attention subtests of the Test for Attentional Performance; Sustained Attention Dots and Shifting Attentional Set subtests of the Amsterdam Neuropsychological Test) and questionnaire data (inattention subscales of the so-called Fremdbeurteilungsbogen für Hyperkinetische Störungen and Child Behavior Checklist/4–18 [CBCL/4–18]). All data were analyzed retrospectively. Results The mean auditive reaction time in a Divided Attention task decreased significantly from T0 to T1 (medium effect), which was persistent over time and also found for a T0–T2 comparison (larger effects). In the Sustained Attention Dots task, the mean reaction time was reduced from T0–T1 and T1–T2 (small effects), whereas in the Shifting Attentional Set task, patients were able to increase the number of trials from T1–T2 and significantly diminished the number of errors (T1–T2 & T0–T2, large effects). Conclusion First positive but very small effects and preliminary results regarding different parameters of attentional performance were detected in young individuals with ADHD. The limitations of the obtained preliminary data are the rather small sample size, the lack of a control group/a placebo condition and the open-label approach because of the clinical setting and retrospective analysis. The value of the current approach lies in providing pilot data for future studies involving larger samples.
Brain and Cognition | 2017
Florian Daniel Zepf; Sarah Bubenzer-Busch; Kevin C. Runions; Pradeep Rao; Janice W.Y. Wong; Simone Mahfouda; Hugo A.E. Morandini; Richard M. Stewart; Julia K. Moore; Caroline Sarah Biskup; Simon B. Eickhoff; Gereon R. Fink; Robert Langner
&NA; The ability to maintain attention to simple tasks (i.e., vigilant attention, VA) is often impaired in attention‐deficit/hyperactivity disorder (ADHD), but the underlying pathophysiological mechanisms at the brain network level are not clear yet. We therefore investigated ADHD‐related differences in resting‐state functional connectivity within a meta‐analytically defined brain network of 14 distinct regions subserving VA (comprising 91 connections in total), as well as the association of connectivity with markers of behavioural dysfunction in 17 children (age range: 9–14 years) with a diagnosis of ADHD and 21 age‐matched neurotypical controls. Our analyses revealed selective, rather than global, differences in the intrinsic coupling between nodes of the VA‐related brain network in children with ADHD, relative to controls. In particular, ADHD patients showed substantially diminished intrinsic coupling for 7 connections and increased coupling for 4 connections, with many differences involving connectivity with the anterior insula. Moreover, connectivity strength of several aberrant connections was found to be associated with core aspects of ADHD symptomatology, such as poor attention, difficulties with social functioning, and impaired cognitive control, attesting to the behavioural relevance of specific connectivity differences observed in the resting state.