Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah C. Hill is active.

Publication


Featured researches published by Sarah C. Hill.


Science | 2016

Zika virus in the Americas: Early epidemiological and genetic findings

Nuno Rodrigues Faria; Raimunda do Socorro da Silva Azevedo; Moritz U. G. Kraemer; Renato Souza; Mariana Sequetin Cunha; Sarah C. Hill; Julien Thézé; Michael B. Bonsall; Thomas A. Bowden; Ilona Rissanen; Iray Maria Rocco; Juliana Silva Nogueira; Adriana Yurika Maeda; Fernanda Giseli da Silva Vasami; Fernando Luiz de Lima Macedo; Akemi Suzuki; Sueli Guerreiro Rodrigues; Ana Cecília Ribeiro Cruz; Bruno Tardeli Nunes; Daniele Barbosa de Almeida Medeiros; Daniela Sueli Guerreiro Rodrigues; Alice Louize Nunes Queiroz; Eliana Vieira Pinto da Silva; Daniele Freitas Henriques; Elisabeth Salbe Travassos da Rosa; Consuelo Silva de Oliveira; Lívia Carício Martins; Helena Baldez Vasconcelos; L. M. N. Casseb; Darlene de Brito Simith

Zika virus genomes from Brazil The Zika virus outbreak is a major cause for concern in Brazil, where it has been linked with increased reports of otherwise rare birth defects and neuropathology. In a phylogenetic analysis, Faria et al. infer a single introduction of Zika to the Americas and estimated the introduction date to be about May to December 2013—some 12 months earlier than the virus was reported. This timing correlates with major events in the Brazilian cultural calendar associated with increased traveler numbers from areas where Zika virus has been circulating. A correlation was also observed between incidences of microcephaly and week 17 of pregnancy. Science, this issue p. 345 Virus sequencing indicates that Zika arrived in Brazil during the middle of 2013, coincident with a surge in air travelers. Brazil has experienced an unprecedented epidemic of Zika virus (ZIKV), with ~30,000 cases reported to date. ZIKV was first detected in Brazil in May 2015, and cases of microcephaly potentially associated with ZIKV infection were identified in November 2015. We performed next-generation sequencing to generate seven Brazilian ZIKV genomes sampled from four self-limited cases, one blood donor, one fatal adult case, and one newborn with microcephaly and congenital malformations. Results of phylogenetic and molecular clock analyses show a single introduction of ZIKV into the Americas, which we estimated to have occurred between May and December 2013, more than 12 months before the detection of ZIKV in Brazil. The estimated date of origin coincides with an increase in air passengers to Brazil from ZIKV-endemic areas, as well as with reported outbreaks in the Pacific Islands. ZIKV genomes from Brazil are phylogenetically interspersed with those from other South American and Caribbean countries. Mapping mutations onto existing structural models revealed the context of viral amino acid changes present in the outbreak lineage; however, no shared amino acid changes were found among the three currently available virus genomes from microcephaly cases. Municipality-level incidence data indicate that reports of suspected microcephaly in Brazil best correlate with ZIKV incidence around week 17 of pregnancy, although this correlation does not demonstrate causation. Our genetic description and analysis of ZIKV isolates in Brazil provide a baseline for future studies of the evolution and molecular epidemiology of this emerging virus in the Americas.


Nature | 2017

Establishment and cryptic transmission of Zika virus in Brazil and the Americas

Nuno Rodrigues Faria; Josh Quick; Julien Thézé; J. G. de Jesus; Marta Giovanetti; Moritz U. G. Kraemer; Sarah C. Hill; Allison Black; A. C. da Costa; Luciano Franco; Sandro Patroca da Silva; Chieh-Hsi Wu; Jayna Raghwani; Simon Cauchemez; L. du Plessis; M. P. Verotti; W. K. de Oliveira; E. H. Carmo; Giovanini Evelim Coelho; A. C. F. S. Santelli; L. C. Vinhal; C. M. Henriques; Jared T. Simpson; Matthew Loose; Kristian G. Andersen; Nathan D. Grubaugh; Sneha Somasekar; Charles Y. Chiu; José Esteban Muñoz-Medina; César González-Bonilla

Transmission of Zika virus (ZIKV) in the Americas was first confirmed in May 2015 in northeast Brazil. Brazil has had the highest number of reported ZIKV cases worldwide (more than 200,000 by 24 December 2016) and the most cases associated with microcephaly and other birth defects (2,366 confirmed by 31 December 2016). Since the initial detection of ZIKV in Brazil, more than 45 countries in the Americas have reported local ZIKV transmission, with 24 of these reporting severe ZIKV-associated disease. However, the origin and epidemic history of ZIKV in Brazil and the Americas remain poorly understood, despite the value of this information for interpreting observed trends in reported microcephaly. Here we address this issue by generating 54 complete or partial ZIKV genomes, mostly from Brazil, and reporting data generated by a mobile genomics laboratory that travelled across northeast Brazil in 2016. One sequence represents the earliest confirmed ZIKV infection in Brazil. Analyses of viral genomes with ecological and epidemiological data yield an estimate that ZIKV was present in northeast Brazil by February 2014 and is likely to have disseminated from there, nationally and internationally, before the first detection of ZIKV in the Americas. Estimated dates for the international spread of ZIKV from Brazil indicate the duration of pre-detection cryptic transmission in recipient regions. The role of northeast Brazil in the establishment of ZIKV in the Americas is further supported by geographic analysis of ZIKV transmission potential and by estimates of the basic reproduction number of the virus.


Science | 2016

Role for migratory wild birds in the global spread of avian influenza H5N8

Samantha Lycett; R. Bodewes; Anne Pohlmann; Jill Banks; C. Bányai; M.F. Boni; R.J. Bouwstra; A.C. Breed; Ian H. Brown; Honglin Chen; Ádám Dán; N. Diep; Marius Gilbert; Sarah C. Hill; H.S. Ip; Changwen Ke; H. Kida; M.L. Killian; Marion Koopmans; J.-H. Kwon; D.-H. Lee; Y.J. Lee; Ling Lu; Isabella Monne; J. Pasick; Oliver G. Pybus; Andrew Rambaut; Timothy P. Robinson; Y. Sakoda; S. Zohari

Migration of influenza in wild birds Virus surveillance in wild birds could offer an early warning system that, combined with adequate farm hygiene, would lead to effective influenza control in poultry units. The Global Consortium for H5N8 and Related Influenza Viruses found that the H5 segment common to the highly pathogenic avian influenza viruses readily reassorts with other influenza viruses (see the Perspective by Russell). H5 is thus a continual source of new pathogenic variants. These data also show that the H5N8 virus that recently caused serious outbreaks in European and North American poultry farms came from migrant ducks, swans, and geese that meet at their Arctic breeding grounds. Because the virus is so infectious, culling wild birds is not an effective control measure. Science, this issue p. 213; see also p. 174 High pathogenicity avian H5 influenza disperses around the Northern Hemisphere in long-distant migrant geese and ducks. Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014–2015. Our analysis of H5N8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza to poultry, and potentially human, health.


Nature Protocols | 2017

Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples

Joshua Quick; Nathan D. Grubaugh; Steven T. Pullan; Ingra M Claro; Andrew D Smith; Karthik Gangavarapu; Glenn Oliveira; Refugio Robles-Sikisaka; Thomas F. Rogers; Nathan Beutler; Dennis R. Burton; Lia Laura Lewis-Ximenez; Jaqueline Goes Jesus; Marta Giovanetti; Sarah C. Hill; Allison Black; Trevor Bedford; Miles W. Carroll; Márcio Roberto Teixeira Nunes; Luiz Carlos Junior Alcantara; Ester C. Sabino; Sally A. Baylis; Nuno Rodrigues Faria; Matthew Loose; Jared T. Simpson; Oliver G. Pybus; Kristian G. Andersen; Nicholas J. Loman

Genome sequencing has become a powerful tool for studying emerging infectious diseases; however, genome sequencing directly from clinical samples (i.e., without isolation and culture) remains challenging for viruses such as Zika, for which metagenomic sequencing methods may generate insufficient numbers of viral reads. Here we present a protocol for generating coding-sequence-complete genomes, comprising an online primer design tool, a novel multiplex PCR enrichment protocol, optimized library preparation methods for the portable MinION sequencer (Oxford Nanopore Technologies) and the Illumina range of instruments, and a bioinformatics pipeline for generating consensus sequences. The MinION protocol does not require an Internet connection for analysis, making it suitable for field applications with limited connectivity. Our method relies on multiplex PCR for targeted enrichment of viral genomes from samples containing as few as 50 genome copies per reaction. Viral consensus sequences can be achieved in 1–2 d by starting with clinical samples and following a simple laboratory workflow. This method has been successfully used by several groups studying Zika virus evolution and is facilitating an understanding of the spread of the virus in the Americas. The protocol can be used to sequence other viral genomes using the online Primal Scheme primer designer software. It is suitable for sequencing either RNA or DNA viruses in the field during outbreaks or as an inexpensive, convenient method for use in the lab.


PLOS Genetics | 2013

The light skin allele of SLC24A5 in South Asians and Europeans shares identity by descent

Chandana Basu Mallick; Florin Mircea Iliescu; Märt Möls; Sarah C. Hill; Rakesh Tamang; Gyaneshwer Chaubey; Rie Goto; Simon Y. W. Ho; Irene Gallego Romero; Federica Crivellaro; Georgi Hudjashov; Niraj Rai; Mait Metspalu; C. G. Nicholas Mascie-Taylor; Ramasamy Pitchappan; Lalji Singh; Marta Mirazon-Lahr; Kumarasamy Thangaraj; Richard Villems; Toomas Kivisild

Skin pigmentation is one of the most variable phenotypic traits in humans. A non-synonymous substitution (rs1426654) in the third exon of SLC24A5 accounts for lighter skin in Europeans but not in East Asians. A previous genome-wide association study carried out in a heterogeneous sample of UK immigrants of South Asian descent suggested that this gene also contributes significantly to skin pigmentation variation among South Asians. In the present study, we have quantitatively assessed skin pigmentation for a largely homogeneous cohort of 1228 individuals from the Southern region of the Indian subcontinent. Our data confirm significant association of rs1426654 SNP with skin pigmentation, explaining about 27% of total phenotypic variation in the cohort studied. Our extensive survey of the polymorphism in 1573 individuals from 54 ethnic populations across the Indian subcontinent reveals wide presence of the derived-A allele, although the frequencies vary substantially among populations. We also show that the geospatial pattern of this allele is complex, but most importantly, reflects strong influence of language, geography and demographic history of the populations. Sequencing 11.74 kb of SLC24A5 in 95 individuals worldwide reveals that the rs1426654-A alleles in South Asian and West Eurasian populations are monophyletic and occur on the background of a common haplotype that is characterized by low genetic diversity. We date the coalescence of the light skin associated allele at 22–28 KYA. Both our sequence and genome-wide genotype data confirm that this gene has been a target for positive selection among Europeans. However, the latter also shows additional evidence of selection in populations of the Middle East, Central Asia, Pakistan and North India but not in South India.


Lancet Infectious Diseases | 2017

Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015–16: a modelling study

Moritz U. G. Kraemer; Nuno Rodrigues Faria; Robert C Reiner; Nick Golding; Birgit Nikolay; Stephanie Stasse; Michael A. Johansson; Henrik Salje; Ousmane Faye; G. R. William Wint; Matthias Niedrig; Freya M Shearer; Sarah C. Hill; Robin N Thompson; Donal Bisanzio; Nuno Taveira; Heinrich H. Nax; Bary S. R. Pradelski; Elaine O. Nsoesie; Nicholas R Murphy; Isaac I. Bogoch; Kamran Khan; John S. Brownstein; Andrew J. Tatem; Tulio de Oliveira; David L. Smith; Amadou A. Sall; Oliver G. Pybus; Simon I. Hay; Simon Cauchemez

Summary Background Since late 2015, an epidemic of yellow fever has caused more than 7334 suspected cases in Angola and the Democratic Republic of the Congo, including 393 deaths. We sought to understand the spatial spread of this outbreak to optimise the use of the limited available vaccine stock. Methods We jointly analysed datasets describing the epidemic of yellow fever, vector suitability, human demography, and mobility in central Africa to understand and predict the spread of yellow fever virus. We used a standard logistic model to infer the district-specific yellow fever virus infection risk during the course of the epidemic in the region. Findings The early spread of yellow fever virus was characterised by fast exponential growth (doubling time of 5–7 days) and fast spatial expansion (49 districts reported cases after only 3 months) from Luanda, the capital of Angola. Early invasion was positively correlated with high population density (Pearsons r 0·52, 95% CI 0·34–0·66). The further away locations were from Luanda, the later the date of invasion (Pearsons r 0·60, 95% CI 0·52–0·66). In a Cox model, we noted that districts with higher population densities also had higher risks of sustained transmission (the hazard ratio for cases ceasing was 0·74, 95% CI 0·13–0·92 per log-unit increase in the population size of a district). A model that captured human mobility and vector suitability successfully discriminated districts with high risk of invasion from others with a lower risk (area under the curve 0·94, 95% CI 0·92–0·97). If at the start of the epidemic, sufficient vaccines had been available to target 50 out of 313 districts in the area, our model would have correctly identified 27 (84%) of the 32 districts that were eventually affected. Interpretation Our findings show the contributions of ecological and demographic factors to the ongoing spread of the yellow fever outbreak and provide estimates of the areas that could be prioritised for vaccination, although other constraints such as vaccine supply and delivery need to be accounted for before such insights can be translated into policy. Funding Wellcome Trust.


Infection, Genetics and Evolution | 2015

Wild waterfowl migration and domestic duck density shape the epidemiology of highly pathogenic H5N8 influenza in the Republic of Korea

Sarah C. Hill; Youn-Jeong Lee; Byung-Min Song; Hyun-Mi Kang; Eun-Kyoung Lee; Amanda Hanna; Marius Gilbert; Ian H. Brown; Oliver G. Pybus

Highlights • Phylogeographic analyses of H5N8, including 49 new sequences from South Korea.• H5N8 movement was mostly among areas dense in wild and domestic ducks.• New viral introductions to South Korea occurred at time of wild bird migration.• H5N8 epidemiology is shaped by wild waterfowl migration and domestic duck density.• H5N8 may have entered Europe at least twice, and Asia at least three times.


International Journal of Cancer | 2013

G-CSF rescues tumor growth and neo-angiogenesis during liver metastasis under host angiopoietin-2 deficiency

Jae Hong Im; Thomas Tapmeier; Lukxmi Balathasan; Annamaria Gal; Sabira Yameen; Sarah C. Hill; Sean Smart; Olivier Noterdaeme; Matthew Kelly; Michael Brady; Weili Fu; Karoline Kruse; Eric J. Bernhard; Hellmut G. Augustin; Ruth J. Muschel

Suppression of neo‐angiogenesis is a clinically used anti‐tumor strategy with new targets such as angiopoietin‐2 (Ang2) being proposed. However, the functions of Ang2 in vascular remodeling, inflammation and tumor growth are not consistent. We examined effect of depletion of host Ang2 on liver colony formation using Ang2 deficient (Ang2−/−) mice. Surprisingly, the metastatic colonies formed in Ang2−/− mice were larger than those in the wild type. These colonies had greater vascular density with more pericyte coverage than the vessels in liver colonies in the wild type. Liver VEGF concentration in both genotypes was equivalent, and thus, the differences appeared VEGF independent. However, after colony formation, the serum concentration of granulocyte‐colony stimulating factor (G‐CSF) and CXCL1 in Ang2−/− mice was 12 and 6 times greater than after colony formation in wild type. Increase of these two cytokines was associated with two times greater numbers of neutrophils recruited to the liver. Two times more Tie2+/CD11b+/CD31− cells were present in the tumors in Ang2−/− than in the wild type livers. These results suggest that the depletion of host Ang2 induced compensatory VEGF‐independent angiogenic mechanisms and thus enhanced liver metastatic colony growth and colony vascularity. They further indicate organotypic differences in response to tumor metastasis. In contrast, Ang2 deficiency inhibited tumor growth during metastatic colony formation in the lung, consistent with the reports of decreased pulmonary seeding of tumor cells after pharmacological inhibition of Ang2. Further studies are thus required to assess the effects of pharmacological Ang2 blockade for cancer patients particularly in the liver.


Journal of General Virology | 2015

Discovery of a polyomavirus in European badgers (Meles meles) and the evolution of host range in the family Polyomaviridae.

Sarah C. Hill; Aisling A. Murphy; Matt Cotten; Anne L. Palser; Phillip Benson; Sandrine Lesellier; Eamonn Gormley; Céline Richomme; Sylvia S. Grierson; Deirdre Ní Bhuachalla; Mark A. Chambers; Paul Kellam; Maria-Laura Boschiroli; Bernhard Ehlers; Michael A. Jarvis; Oliver G. Pybus

Polyomaviruses infect a diverse range of mammalian and avian hosts, and are associated with a variety of symptoms. However, it is unknown whether the viruses are found in all mammalian families and the evolutionary history of the polyomaviruses is still unclear. Here, we report the discovery of a novel polyomavirus in the European badger (Meles meles), which to our knowledge represents the first polyomavirus to be characterized in the family Mustelidae, and within a European carnivoran. Although the virus was discovered serendipitously in the supernatant of a cell culture inoculated with badger material, we subsequently confirmed its presence in wild badgers. The European badger polyomavirus was tentatively named Meles meles polyomavirus 1 (MmelPyV1). The genome is 5187 bp long and encodes proteins typical of polyomaviruses. Phylogenetic analyses including all known polyomavirus genomes consistently group MmelPyV1 with California sea lion polyomavirus 1 across all regions of the genome. Further evolutionary analyses revealed phylogenetic discordance amongst polyomavirus genome regions, possibly arising from evolutionary rate heterogeneity, and a complex association between polyomavirus phylogeny and host taxonomic groups.Polyomaviruses infect a diverse range of mammalian and avian hosts, and are associated with a variety of symptoms. However, it is unknown whether the viruses are found in all mammalian families and the evolutionary history of the polyomaviruses is still unclear. Here, we report the discovery of a novel polyomavirus in the European badger (Meles meles), which to our knowledge represents the first polyomavirus to be characterized in the family Mustelidae, and within a European carnivoran. Although the virus was discovered serendipitously in the supernatant of a cell culture inoculated with badger material, we subsequently confirmed its presence in wild badgers. The European badger polyomavirus was tentatively named Meles meles polyomavirus 1 (MmelPyV1). The genome is 5187 bp long and encodes proteins typical of polyomaviruses. Phylogenetic analyses including all known polyomavirus genomes consistently group MmelPyV1 with California sea lion polyomavirus 1 across all regions of the genome. Further evolutionary analyses revealed phylogenetic discordance amongst polyomavirus genome regions, possibly arising from evolutionary rate heterogeneity, and a complex association between polyomavirus phylogeny and host taxonomic groups.


Proceedings of the Royal Society B: Biological Sciences | 2016

Antibody responses to avian influenza viruses in wild birds broaden with age.

Sarah C. Hill; Ruth J. Manvell; Bodo Schulenburg; Wendy Shell; Paul S. Wikramaratna; Christopher M. Perrins; Ben C. Sheldon; Ian H. Brown; Oliver G. Pybus

For viruses such as avian influenza, immunity within a host population can drive the emergence of new strains by selecting for viruses with novel antigens that avoid immune recognition. The accumulation of acquired immunity with age is hypothesized to affect how influenza viruses emerge and spread in species of different lifespans. Despite its importance for understanding the behaviour of avian influenza viruses, little is known about age-related accumulation of immunity in the viruss primary reservoir, wild birds. To address this, we studied the age structure of immune responses to avian influenza virus in a wild swan population (Cygnus olor), before and after the population experienced an outbreak of highly pathogenic H5N1 avian influenza in 2008. We performed haemagglutination inhibition assays on sampled sera for five avian influenza strains and show that breadth of response accumulates with age. The observed age-related distribution of antibody responses to avian influenza strains may explain the age-dependent mortality observed during the highly pathogenic H5N1 outbreak. Age structures and species lifespan are probably important determinants of viral epidemiology and virulence in birds.

Collaboration


Dive into the Sarah C. Hill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian H. Brown

Animal and Plant Health Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josh Quick

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Loose

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge