Sarah C. Mullaly
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah C. Mullaly.
Journal of Immunology | 2010
Anastasia Nijnik; Laurence Madera; Shuhua Ma; Matthew Waldbrook; Melissa Elliott; Donna M. Easton; Matthew L. Mayer; Sarah C. Mullaly; Jason Kindrachuk; Haûvard Jenssen; Robert E. W. Hancock
With the rapid rise in the incidence of multidrug resistant infections, there is substantial interest in host defense peptides as templates for production of new antimicrobial therapeutics. Natural peptides are multifunctional mediators of the innate immune response, with some direct antimicrobial activity and diverse immunomodulatory properties. We have previously developed an innate defense regulator (IDR) 1, with protective activity against bacterial infection mediated entirely through its effects on the immunity of the host, as a novel approach to anti-infective therapy. In this study, an immunomodulatory peptide IDR-1002 was selected from a library of bactenecin derivatives based on its substantially more potent ability to induce chemokines in human PBMCs. The enhanced chemokine induction activity of the peptide in vitro correlated with stronger protective activity in vivo in the Staphylococcus aureus-invasive infection model, with a >5-fold reduction in the protective dose in direct comparison with IDR-1. IDR-1002 also afforded protection against the Gram-negative bacterial pathogen Escherichia coli. Chemokine induction by IDR-1002 was found to be mediated through a Gi-coupled receptor and the PI3K, NF-κB, and MAPK signaling pathways. The protective activity of the peptide was associated with in vivo augmentation of chemokine production and recruitment of neutrophils and monocytes to the site of infection. These results highlight the importance of the chemokine induction activity of host defense peptides and demonstrate that the optimization of the ex vivo chemokine-induction properties of peptides is a promising method for the rational development of immunomodulatory IDR peptides with enhanced anti-infective activity.
Journal of Clinical Investigation | 2009
Graciela Andonegui; Hong Zhou; Daniel C. Bullard; Margaret M. Kelly; Sarah C. Mullaly; Braedon McDonald; Elizabeth M. Long; Stephen M. Robbins; Paul Kubes
Recognition of LPS by TLR4 on immune sentinel cells such as macrophages is thought to be key to the recruitment of neutrophils to sites of infection with Gram-negative bacteria. To explore whether endothelial TLR4 plays a role in this process, we engineered and imaged mice that expressed TLR4 exclusively on endothelium (known herein as EndotheliumTLR4 mice). Local administration of LPS into tissue induced comparable neutrophil recruitment in EndotheliumTLR4 and wild-type mice. Following systemic LPS or intraperitoneal E. coli administration, most neutrophils were sequestered in the lungs of wild-type mice and did not accumulate at primary sites of infection. In contrast, EndotheliumTLR4 mice showed reduced pulmonary capillary neutrophil sequestration over the first 24 hours; as a result, they mobilized neutrophils to primary sites of infection, cleared bacteria, and resisted a dose of E. coli that killed 50% of wild-type mice in the first 48 hours. In fact, the only defect we detected in EndotheliumTLR4 mice was a failure to accumulate neutrophils in the lungs following intratracheal administration of LPS; this response required TLR4 on bone marrow-derived immune cells. Therefore, endothelial TLR4 functions as the primary intravascular sentinel system for detection of bacteria, whereas bone marrow-derived immune cells are critical for pathogen detection at barrier sites. Nonendothelial TLR4 contributes to failure to accumulate neutrophils at primary infection sites in a disseminated systemic infection.
Journal of Immunology | 2009
Mia Phillipson; Bryan Heit; Sean A. Parsons; Björn Petri; Sarah C. Mullaly; Pina Colarusso; R. Michael Gower; Gregory Neely; Scott I. Simon; Paul Kubes
Mac-1-dependent crawling is a new step in the leukocyte recruitment cascade that follows LFA-1-dependent adhesion and precedes emigration. Neutrophil adhesion via LFA-1 has been shown to induce cytoskeletal reorganization through Vav1-dependent signaling, and the current study investigates the role of Vav1 in the leukocyte recruitment process in vivo with particular attention to the events immediately downstream of LFA-1-dependent adhesion. Intravital and spinning-disk-confocal microscopy was used to investigate intravascular crawling in relation to endothelial junctions in vivo in wild-type and Vav1−/− mice. Adherent wild-type neutrophils almost immediately began crawling perpendicular to blood flow via Mac-1 until they reached an endothelial junction where they often changed direction. This pattern of perpendicular, mechanotactic crawling was recapitulated in vitro when shear was applied. In sharp contrast, the movement of Vav1−/− neutrophils was always in the direction of flow and appeared more passive as if the cells were dragged in the direction of flow in vivo and in vitro. More than 80% of Vav1−/− neutrophils moved independent of Mac-1 and could be detached with LFA-1 Abs. An inability to release the uropod was frequently noted for Vav1−/− neutrophils, leading to greatly elongated tails. The Vav1−/− neutrophils failed to stop or follow junctions and ultimately detached, leading to fewer emigrated neutrophils. The Vav1−/− phenotype resulted in fewer neutrophils recruited in a relevant model of infectious peritonitis. Clearly, Vav1 is critical for the complex interplay between LFA-1 and Mac-1 that underlies the programmed intravascular crawling of neutrophils.
Journal of Experimental Medicine | 2005
Lixin Liu; Denise C. Cara; Jaswinder Kaur; Eko Raharjo; Sarah C. Mullaly; Jenny Jongstra-Bilen; Jan Jongstra; Paul Kubes
Leukocyte-specific protein 1 (LSP1), an F-actin binding protein and a major downstream substrate of p38 mitogen-activated protein kinase as well as protein kinase C, has been reported to be important in leukocyte chemotaxis. Although its distribution has been thought to be restricted to leukocytes, herein we report that LSP1 is expressed in endothelium and is essential to permit neutrophil emigration. Using intravital microscopy to directly visualize leukocyte rolling, adhesion, and emigration in postcapillary venules in LSP1-deficient (Lsp1 −/−) mice, we found that LSP1 deficiency inhibits neutrophil extravasation in response to various cytokines (tumor necrosis factor-α and interleukin-1β) and to neutrophil chemokine keratinocyte-derived chemokine in vivo. LSP1 deficiency did not affect leukocyte rolling or adhesion. Generation of Lsp1 −/− chimeric mice using bone marrow transplantation revealed that in mice with Lsp1 −/− endothelial cells and wild-type leukocytes, neutrophil transendothelial migration out of postcapillary venules is markedly restricted. In contrast, Lsp1 −/− neutrophils in wild-type mice were able to extravasate normally. Consistent with altered endothelial function was a reduction in vascular permeability to histamine in Lsp1 −/− animals. Western blot analysis and immunofluorescence microscopy examination confirmed the presence of LSP1 in wild-type but not in Lsp1 −/− mouse microvascular endothelial cells. Cultured human endothelial cells also stained positive for LSP1. Our results suggest that LSP1 expressed in endothelium regulates neutrophil transendothelial migration.
Journal of Immunology | 2006
Sarah C. Mullaly; Paul Kubes
Based on a wealth of in vitro macrophage studies, immunity to Staphylococcus aureus cell wall-derived peptidoglycan (PGN) and lipoteichoic acid has been attributed to TLR2. We investigated whether the in vitro paradigm of TLR2 dominance would hold true in vivo. Using an experimental peritonitis model, we challenged mice with PGN or lipoteichoic acid and found that only PGN resulted in significant leukocyte (primarily neutrophil) accumulation in the peritoneum at 4 h. PGN-mediated leukocyte recruitment was P-/E-selectin dependent but only partially TLR2 dependent, and also involved the C5aR. Concomitant inhibition of TLR2 and C5aR resulted in a further reduction in PGN-induced peritonitis. Peritoneal neutrophilia was partially mast cell dependent; however, the defect could not be reconstituted with TLR2−/− or C5aR−/− mast cells. Interestingly, macrophage-deficient mice did not have defective neutrophil recruitment. By 24 h, the response to PGN involved primarily monocytes and was TLR2 and C5aR independent. Finally, we challenged mice with live S. aureus and found a similar degree of TLR2 involvement in leukocyte recruitment to that observed with PGN. Most importantly, bacterial clearance from the spleen and peritoneum was not altered in TLR2−/− mice vs wild-type mice. Morbidity was only significantly increased in S. aureus-infected mice treated with a blocking Fab against C5aR. Taken together, these studies indicate that in vivo responses to prototypic TLR2 ligands do not necessarily recapitulate the absolute necessity for TLR2 observed in vitro, and additional receptors contribute, in a significant manner, to PGN and S. aureus-mediated immune responses.
European Journal of Immunology | 2007
Sarah C. Mullaly; Paul Kubes
The in vitro macrophage response to zymosan has been attributed to Toll‐like receptor 2 (TLR2). Whether TLR2 is obligatory for the zymosan‐induced in vivo response has not been assessed. The importance of this question is underscored by the fact that zymosan activates complement in a cell‐independent manner. We have investigated whether the in vitro observation of TLR2 as the dominant zymosan receptor on macrophages would translate to an experimental peritonitis model in vivo. We have treated mice with zymosan, resulting in significant leukocyte (primarily neutrophil) accumulation in the peritoneum at 4 h. Zymosan‐mediated leukocyte recruitment was TLR2 independent, but was predominantly dependent on the complement components, C3 and C5a with a minor contribution from LTB4. Peritoneal neutrophilia was 50% mast cell dependent and this defect was reproduced using C5a receptor (C5aR)‐deficient mast cells in mast cell‐deficient mice, suggesting that C5aR is responsible for mast cell activation following zymosan challenge. By 24 h, the response to zymosan involved primarily monocyte recruitment and was C3 and C5aR independent. Taken together, these studies indicate that the in vivo inflammatory response to zymosan does not necessarily mimic the TLR2 dependence observed in vitro, and that complement plays a dominant role in early, but not late, zymosan‐mediated peritonitis.
Journal of Clinical Investigation | 2003
Graciela Andonegui; Claudine S. Bonder; Francis H. Y. Green; Sarah C. Mullaly; Lori Zbytnuik; Eko Raharjo; Paul Kubes
ACS Chemical Biology | 2009
Artem Cherkasov; Kai Hilpert; Håvard Jenssen; Christopher D. Fjell; Matt Waldbrook; Sarah C. Mullaly; Rudolf Volkmer; Robert E. W. Hancock
Circulation Research | 2004
Sarah C. Mullaly; Paul Kubes
Journal of Immunology | 2010
Sarah C. Mullaly; Steven Maltby; Kyle Burrows; Kelly M. McNagny; Colby Zaph