Sarah C. Nuding
University of South Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah C. Nuding.
The Journal of Physiology | 2008
Thomas E. Dick; Roger Shannon; Bruce G. Lindsey; Sarah C. Nuding; Lauren S. Segers; David M. Baekey; Kendall F. Morris
The dorsolateral (DL) pons modulates the respiratory pattern. With the prevention of lung inflation during central inspiratory phase (no‐inflation (no‐I or delayed‐I) tests), DL pontine neuronal activity increased the strength and consistency of its respiratory modulation, properties measured statistically by the η2 value. This increase could result from enhanced respiratory‐modulated drive arising from the medulla normally gated by vagal activity. We hypothesized that DL pontine activity during delayed‐I tests would be comparable to that following vagotomy. Ensemble recordings of neuronal activity were obtained before and after vagotomy and during delayed‐I tests in decerebrate, paralysed and ventilated cats. In general, changes in activity pattern during the delayed‐I tests were similar to those after vagotomy, with the exception of firing‐rate differences at the inspiratory–expiratory phase transition. Even activity that was respiratory‐modulated with the vagi intact became more modulated while withholding lung inflation and following vagotomy. Furthermore, we recorded activity that was excited by lung inflation as well as changes that persisted past the stimulus cycle. Computer simulations of a recurrent inhibitory neural network model account not only for enhanced respiratory modulation with vagotomy but also the varied activities observed with the vagi intact. We conclude that (a) DL pontine neurones receive both vagal‐dependent excitatory inputs and central respiratory drive; (b) even though changes in pontine activity are transient, they can persist after no‐I tests whether or not changes in the respiratory pattern occur in the subsequent cycles; and (c) models of respiratory control should depict a recurrent inhibitory circuitry, which can act to maintain the stability and provide plasticity to the respiratory pattern.
Philosophical Transactions of the Royal Society B | 2009
Sarah C. Nuding; Lauren S. Segers; Roger Shannon; Russell O'Connor; Kendall F. Morris; Bruce G. Lindsey
The brainstem network for generating and modulating the respiratory motor pattern includes neurons of the medullary ventrolateral respiratory column (VRC), dorsolateral pons (PRG) and raphé nuclei. Midline raphé neurons are proposed to be elements of a distributed brainstem system of central chemoreceptors, as well as modulators of central chemoreceptors at other sites, including the retrotrapezoid nucleus. Stimulation of the raphé system or peripheral chemoreceptors can induce a long-term facilitation of phrenic nerve activity; central chemoreceptor stimulation does not. The network mechanisms through which each class of chemoreceptor differentially influences breathing are poorly understood. Microelectrode arrays were used to monitor sets of spike trains from 114 PRG, 198 VRC and 166 midline neurons in six decerebrate vagotomized cats; 356 were recorded during sequential stimulation of both receptor classes via brief CO2-saturated saline injections in vertebral (central) and carotid arteries (peripheral). Seventy neurons responded to both stimuli. More neurons were responsive only to peripheral challenges than those responsive only to central chemoreceptor stimulation (PRG, 20 : 4; VRC, 41 : 10; midline, 25 : 13). Of 16 474 pairs of neurons evaluated for short-time scale correlations, similar percentages of reference neurons in each brain region had correlation features indicative of a specific interaction with at least one target neuron: PRG (59.6%), VRC (51.0%) and raphé nuclei (45.8%). The results suggest a brainstem network architecture with connectivity that shapes the respiratory motor pattern via overlapping circuits that modulate central and peripheral chemoreceptor-mediated influences on breathing.
Frontiers in Physiology | 2012
Russell O'Connor; Lauren S. Segers; Kendall F. Morris; Sarah C. Nuding; Teresa Pitts; Donald C. Bolser; Paul W. Davenport; Bruce G. Lindsey
Data-driven computational neural network models have been used to study mechanisms for generating the motor patterns for breathing and breathing related behaviors such as coughing. These models have commonly been evaluated in open loop conditions or with feedback of lung volume simply represented as a filtered version of phrenic motor output. Limitations of these approaches preclude assessment of the influence of mechanical properties of the musculoskeletal system and motivated development of a biomechanical model of the respiratory muscles, airway, and lungs using published measures from human subjects. Here we describe the model and some aspects of its behavior when linked to a computational brainstem respiratory network model for breathing and airway defensive behavior composed of discrete “integrate and fire” populations. The network incorporated multiple circuit paths and operations for tuning inspiratory drive suggested by prior work. Results from neuromechanical system simulations included generation of a eupneic-like breathing pattern and the observation that increased respiratory drive and operating volume result in higher peak flow rates during cough, even when the expiratory drive is unchanged, or when the expiratory abdominal pressure is unchanged. Sequential elimination of the model’s sources of inspiratory drive during cough also suggested a role for disinhibitory regulation via tonic expiratory neurons, a result that was subsequently supported by an analysis of in vivo data. Comparisons with antecedent models, discrepancies with experimental results, and some model limitations are noted.
Respiratory Physiology & Neurobiology | 2004
Roger Shannon; David M. Baekey; Kendall F. Morris; Sarah C. Nuding; Lauren S. Segers; Bruce G. Lindsey
A network of neurons in the rostral dorsal lateral pons and pons/mescencephalic junction constitute the pontine respiratory group (PRG) and is essential for reflex cough. As a next step in understanding the role of the PRG in the expression of the cough reflex, we examined neuron firing rates during fictive cough in cats. Decerebrated, thoracotomized, paralyzed, cycle-triggered ventilated adult cats were used. Extracellular activity of many single neurons and phrenic and lumbar neurograms were monitored during fictive cough produced by mechanical stimulation of the intrathoracic trachea. Neurons were tested during control periods for respiratory modulation of firing rate by cycle-triggered histograms and statistical tests. Most respiratory modulated cells were continuously active with various superimposed respiratory patterns; major categories included inspiratory decrementing (I-Dec), expiratory decrementing (E-Dec) and expiratory augmenting (E-Aug). There were alterations in the discharge patterns of respiratory, as well as, non-respiratory modulated neurons during cough. The results suggest an involvement of the PRG in the configuration of the cough motor pattern.
Journal of Neurophysiology | 2011
Mackenzie M. Ott; Sarah C. Nuding; Lauren S. Segers; Bruce G. Lindsey; Kendall F. Morris
The medullary ventral respiratory column (VRC) of neurons is essential for respiratory motor pattern generation; however, the functional connections among these cells are not well understood. A rostral extension of the VRC, including the retrotrapezoid nucleus/parafacial region (RTN-pF), contains neurons responsive to local perturbations of CO(2)/pH. We addressed the hypothesis that both local RTN-pF interactions and functional connections from more caudal VRC compartments--extending from the Bötzinger and pre-Bötzinger complexes to the ventral respiratory group (Böt-VRG)--influence the respiratory modulation of RTN-pF neurons and their responses to central chemoreceptor and baroreflex activation. Spike trains from 294 RTN-pF and 490 Böt-VRG neurons were monitored with multielectrode arrays along with phrenic nerve activity in 14 decerebrate, vagotomized cats. Overall, 214 RTN-pF and 398 Böt-VRG neurons were respiratory modulated; 124 and 95, respectively, were cardiac modulated. Subsets of these neurons were tested with sequential, selective, transient stimulation of central chemoreceptors and arterial baroreceptors; each cells response was evaluated and categorized according to the change in firing rate (if any) following the stimulus. Cross-correlation analysis was applied to 2,884 RTN-pF↔RTN-pF and 8,490 Böt-VRG↔RTN-pF neuron pairs. In total, 174 RTN-pF neurons (59.5%) had significant features in short-time scale correlations with other RTN-pF neurons. Of these, 49 neurons triggered cross-correlograms with offset peaks or troughs (n = 99) indicative of paucisynaptic excitation or inhibition of the target. Forty-nine Böt-VRG neurons (10.0%) were triggers in 74 Böt-VRG→RTN-pF correlograms with offset features, suggesting that Böt-VRG trigger neurons influence RTN-pF target neurons. The results support the hypothesis that local RTN-pF neuron interactions and inputs from Böt-VRG neurons jointly contribute to respiratory modulation of RTN-pF neuronal discharge patterns and promotion or limitation of their responses to central chemoreceptor and baroreceptor stimulation.
Frontiers in Physiology | 2012
Lauren S. Segers; Sarah C. Nuding; Andrea Vovk; Teresa Pitts; David M. Baekey; Russell O'Connor; Kendall F. Morris; Bruce G. Lindsey; Roger Shannon; Donald C. Bolser
This study investigated the stability of the discharge identity of inspiratory decrementing (I-Dec) and augmenting (I-Aug) neurons in the caudal (cVRC) and rostral (rVRC) ventral respiratory column during repetitive fictive cough in the cat. Inspiratory neurons in the cVRC (n = 23) and rVRC (n = 17) were recorded with microelectrodes. Fictive cough was elicited by mechanical stimulation of the intrathoracic trachea. Approximately 43% (10 of 23) of I-Dec neurons shifted to an augmenting discharge pattern during the first cough cycle (C1). By the second cough cycle (C2), half of these returned to a decrementing pattern. Approximately 94% (16 of 17) of I-Aug neurons retained an augmenting pattern during C1 of a multi-cough response episode. Phrenic burst amplitude and inspiratory duration increased during C1, but decreased with each subsequent cough in a series of repetitive coughs. As a step in evaluating the model-driven hypothesis that VRC I-Dec neurons contribute to the augmentation of inspiratory drive during cough via inhibition of VRC tonic expiratory neurons that inhibit premotor inspiratory neurons, cross-correlation analysis was used to assess relationships of tonic expiratory cells with simultaneously recorded inspiratory neurons. Our results suggest that reconfiguration of inspiratory-related sub-networks of the respiratory pattern generator occurs on a cycle-by-cycle basis during repetitive coughing.
Journal of Neurophysiology | 2015
Sarah C. Nuding; Lauren S. Segers; Kimberly E. Iceman; Russell O'Connor; Jay B. Dean; Donald C. Bolser; David M. Baekey; Thomas E. Dick; Roger Shannon; Kendall F. Morris; Bruce G. Lindsey
Hyperventilation is a common feature of disordered breathing. Apnea ensues if CO2 drive is sufficiently reduced. We tested the hypothesis that medullary raphé, ventral respiratory column (VRC), and pontine neurons have functional connectivity and persistent or evoked activities appropriate for roles in the suppression of drive and rhythm during hyperventilation and apnea. Phrenic nerve activity, arterial blood pressure, end-tidal CO2, and other parameters were monitored in 10 decerebrate, vagotomized, neuromuscularly-blocked, and artificially ventilated cats. Multielectrode arrays recorded spiking activity of 649 neurons. Loss and return of rhythmic activity during passive hyperventilation to apnea were identified with the S-transform. Diverse fluctuating activity patterns were recorded in the raphé-pontomedullary respiratory network during the transition to hypocapnic apnea. The firing rates of 160 neurons increased during apnea; the rates of 241 others decreased or stopped. VRC inspiratory neurons were usually the last to cease firing or lose rhythmic activity during the transition to apnea. Mayer wave-related oscillations (0.04-0.1 Hz) in firing rate were also disrupted during apnea. Four-hundred neurons (62%) were elements of pairs with at least one hyperventilation-responsive neuron and a correlational signature of interaction identified by cross-correlation or gravitational clustering. Our results support a model with distinct groups of chemoresponsive raphé neurons contributing to hypocapnic apnea through parallel processes that incorporate disfacilitation and active inhibition of inspiratory motor drive by expiratory neurons. During apnea, carotid chemoreceptors can evoke rhythm reemergence and an inspiratory shift in the balance of reciprocal inhibition via suppression of ongoing tonic expiratory neuron activity.
Neurocomputing | 2010
Witali L. Dunin-Barkowski; Andrew T. Lovering; John Orem; David M. Baekey; Thomas E. Dick; Ilya A. Rybak; Kendall F. Morris; Russell O'Connor; Sarah C. Nuding; Roger Shannon; Bruce G. Lindsey
A method for visualization of dynamic multidimensional data-L-plotting, similar to recurrence plotting, is described. For multi-neuronal brainstem recordings the method demonstrates that the neural respiratory pattern generator (RPG) switches between the two phases: inspiratory and expiratory. The method helps to mark phase switching moments and to characterize the pattern of the RPG restart after temporary cessation of rhythmicity. Comparison of L-plots for experimental data and network simulations helps verification of computational models.
The Journal of Physiology | 2008
Thomas E. Dick; Roger Shannon; Bruce G. Lindsey; Sarah C. Nuding; Lauren S. Segers; David M. Baekey
Figure 8. Short-term plasticity of pontine activity following no-inflation test Cycle-triggered average of a pontine neurone that was recruited in inspiration when LI was withheld (black arrow). In the subsequent cycle, activity was greater than that in the cycle previous to the no-I-test (grey arrow). This neurone expressed essentially the same amount of activity in E whether or not LI was withheld. The trace from the original recording for this example is shown in Fig. 1.
Frontiers in Physiology | 2018
Kofi-Kermit Horton; Lauren S. Segers; Sarah C. Nuding; Russell O’Connor; Pierina A. Alencar; Paul W. Davenport; Donald C. Bolser; Teresa Pitts; Bruce G. Lindsey; Kendall F. Morris; Christian Gestreau
Swallow-breathing coordination safeguards the lower airways from tracheal aspiration of bolus material as it moves through the pharynx into the esophagus. Impaired movements of the shared muscles or structures of the aerodigestive tract, or disruptions in the interaction of brainstem swallow and respiratory central pattern generators (CPGs) result in dysphagia. To maximize lower airway protection these CPGs integrate respiratory rhythm generation signals and vagal afferent feedback to synchronize swallow with breathing. Despite extensive study, the roles of central respiratory activity and vagal feedback from the lungs as key elements for effective swallow-breathing coordination remain unclear. The effect of altered timing of bronchopulmonary vagal afferent input on swallows triggered during electrical stimulation of the superior laryngeal nerves or by injection of water into the pharyngeal cavity was studied in decerebrate, paralyzed, and artificially ventilated cats. We observed two types of single swallows that produced distinct effects on central respiratory-rhythm across all conditions: post-inspiratory type swallows disrupted central-inspiratory activity without affecting expiration, whereas expiratory type swallows prolonged expiration without affecting central-inspiratory activity. Repetitive swallows observed during apnea reset the E2 phase of central respiration and produced facilitation of swallow motor output nerve burst durations. Moreover, swallow initiation was negatively modulated by vagal feedback and was reset by lung inflation. Collectively, these findings support a novel model of reciprocal inhibition between the swallow CPG and inspiratory or expiratory cells of the respiratory CPG where lung distension and phases of central respiratory activity represent a dual peripheral and central gating mechanism of swallow-breathing coordination.