Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah C. R. Lummis is active.

Publication


Featured researches published by Sarah C. R. Lummis.


Nature | 2005

Cis – trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel

Sarah C. R. Lummis; Darren L. Beene; Lori W. Lee; Henry A. Lester; R. William Broadhurst; Dennis A. Dougherty

5-Hydroxytryptamine type 3 (5-HT3) receptors are members of the Cys-loop receptor superfamily. Neurotransmitter binding in these proteins triggers the opening (gating) of an ion channel by means of an as-yet-uncharacterized conformational change. Here we show that a specific proline (Pro 8*), located at the apex of the loop between the second and third transmembrane helices (M2–M3), can link binding to gating through a cis–trans isomerization of the protein backbone. Using unnatural amino acid mutagenesis, a series of proline analogues with varying preference for the cis conformer was incorporated at the 8* position. Proline analogues that strongly favour the trans conformer produced non-functional channels. Among the functional mutants there was a strong correlation between the intrinsic cis–trans energy gap of the proline analogue and the activation of the channel, suggesting that cis–trans isomerization of this single proline provides the switch that interconverts the open and closed states of the channel. Consistent with this proposal, nuclear magnetic resonance studies on an M2–M3 loop peptide reveal two distinct, structured forms. Our results thus confirm the structure of the M2–M3 loop and the critical role of Pro 8* in the 5-HT3 receptor. In addition, they suggest that a molecular rearrangement at Pro 8* is the structural mechanism that opens the receptor pore.


Quarterly Reviews of Biophysics | 2010

The structural basis of function in Cys-loop receptors

Andrew J. Thompson; Henry A. Lester; Sarah C. R. Lummis

Cys-loop receptors are membrane-spanning neurotransmitter-gated ion channels that are responsible for fast excitatory and inhibitory transmission in the peripheral and central nervous systems. The best studied members of the Cys-loop family are nACh, 5-HT3, GABAA and glycine receptors. All these receptors share a common structure of five subunits, pseudo-symmetrically arranged to form a rosette with a central ion-conducting pore. Some are cation selective (e.g. nACh and 5-HT3) and some are anion selective (e.g. GABAA and glycine). Each receptor has an extracellular domain (ECD) that contains the ligand-binding sites, a transmembrane domain (TMD) that allows ions to pass across the membrane, and an intracellular domain (ICD) that plays a role in channel conductance and receptor modulation. Cys-loop receptors are the targets for many currently used clinically relevant drugs (e.g. benzodiazepines and anaesthetics). Understanding the molecular mechanisms of these receptors could therefore provide the catalyst for further development in this field, as well as promoting the development of experimental techniques for other areas of neuroscience.In this review, we present our current understanding of Cys-loop receptor structure and function. The ECD has been extensively studied. Research in this area has been stimulated in recent years by the publication of high-resolution structures of nACh receptors and related proteins, which have permitted the creation of many Cys loop receptor homology models of this region. Here, using the 5-HT3 receptor as a typical member of the family, we describe how homology modelling and ligand docking can provide useful but not definitive information about ligand interactions. We briefly consider some of the many Cys-loop receptors modulators. We discuss the current understanding of the structure of the TMD, and how this links to the ECD to allow channel gating, and consider the roles of the ICD, whose structure is poorly understood. We also describe some of the current methods that are beginning to reveal the differences between different receptor states, and may ultimately show structural details of transitions between them.


Molecular Membrane Biology | 2002

The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel (Review)

David C. Reeves; Sarah C. R. Lummis

The ligand-gated ion channel superfamily of neurotransmitter receptors are proteins responsible for rapid transmission of nerve impulses at the synapse and have, therefore, been the subject of intensive research for many years. The cys-loop family, of which the 5-HT3 receptor is a member, includes the nicotinic acetylcholine receptor, the GABAA receptor and the glycine receptor. A diverse range of endogenous and artificial ligands activate these receptors, but, nevertheless, the family shares many similarities of structure and function. Several important questions, however, still remain to be determined, including the mechanism of agonist recognition at the binding site, the nature of the connection between the agonist binding and channel domains, the structure of the transmembrane regions and the mechanism of ion permeation and s electivity. This article reviews recent advances in the characterization of the molecular properties ofthe 5-HT3 receptor and their role in its function, and assesses its suitability as a model system for the study of the above questions.


Neuropharmacology | 2009

The 5-HT3 receptor--the relationship between structure and function.

Nicholas M. Barnes; Tim G. Hales; Sarah C. R. Lummis; John A. Peters

The 5-hydroxytryptamine type-3 (5-HT3) receptor is a cation-selective ion channel of the Cys-loop superfamily. 5-HT3 receptor activation in the central and peripheral nervous systems evokes neuronal excitation and neurotransmitter release. Here, we review the relationship between the structure and the function of the 5-HT3 receptor. 5-HT3A and 5-HT3B subunits are well established components of 5-HT3 receptors but additional HTR3C, HTR3D and HTR3E genes expand the potential for molecular diversity within the family. Studies upon the relationship between subunit structure and the ionic selectivity and single channel conductances of 5-HT3 receptors have identified a novel domain (the intracellular MA-stretch) that contributes to ion permeation and selectivity. Conventional and unnatural amino acid mutagenesis of the extracellular domain of the receptor has revealed residues, within the principle (A-C) and complementary (D-F) loops, which are crucial to ligand binding. An area requiring much further investigation is the subunit composition of 5-HT3 receptors that are endogenous to neurones, and their regional expression within the central nervous system. We conclude by describing recent studies that have identified numerous HTR3A and HTR3B gene polymorphisms that impact upon 5-HT3 receptor function, or expression, and consider their relevance to (patho)physiology.


Current Pharmaceutical Design | 2006

5-HT3 Receptors

Andrew J. Thompson; Sarah C. R. Lummis

The 5-HT(3) receptor is a member of the Cys-loop family of ligand-gated ion channels. These receptors are located in both the peripheral and central nervous systems, where functional receptors are constructed from five subunits. These subunits may be the same (homopentameric 5-HT(3A) receptors) or different (heteropentameric receptors, usually comprising of 5-HT(3A) and 5-HT(3B) receptor subunits), with the latter having a number of distinct properties. The 5-HT(3) receptor binding site is comprised of six loops from two adjacent subunits, and critical ligand binding amino acids in these loops have been largely identified. There are a range of selective agonists and antagonists for these receptors and the pharmacophore is reasonably well understood. There are also a wide range of compounds that can modulate receptor activity. Studies have suggested many diverse potential disease targets that might be amenable to alleviation by 5-HT(3) receptor selective compounds but to date only two applications have been fully realised in the clinic: the treatment of emesis and irritable-bowel syndrome.


The Journal of Neuroscience | 2007

Unnatural Amino Acid Mutagenesis of the GABAA Receptor Binding Site Residues Reveals a Novel Cation–π Interaction between GABA and β2Tyr97

Claire L. Padgett; Ariele P. Hanek; Henry A. Lester; Dennis A. Dougherty; Sarah C. R. Lummis

The binding pockets of Cys-loop receptors are dominated by aromatic amino acids. In the GABAA receptor α1Phe65, β2Tyr97, β2Tyr157, and β2Tyr205 are present at the β2/α1 interface and have been implicated in forming an important part of the GABA binding site. Here, we have probed interactions of these residues using subtle chemical changes: unnatural amino acid mutagenesis was used to introduce a range of Phe analogs, and mutant receptors expressed in oocytes were studied using voltage-clamp electrophysiology. Serial mutations at β297 revealed a ∼20-fold increase in EC50 with the addition of each fluorine atom to a phenylalanine, indicating a cation–π interaction between GABA and this residue. This is the first example of a cation–π interaction in loop A of a Cys-loop receptor. Along with previous studies that identified cation–π interactions in loop B and loop C, the result emphasizes that the location of this interaction is not conserved in the Cys-loop family. The data further show that α165 (in loop D) is tolerant to subtle changes. Conversely, mutating either β2Tyr157 (in loop B) or β2Tyr205 (in loop C) to Phe substantially disrupts receptor function. Substitution of 4-F-Phe, however, at either position, or 4-MeO-Phe at β2Tyr157, resulted in receptors with wild-type EC50 values, suggesting a possible hydrogen bond. The molecular scale insights provided by these data allow the construction of a model for GABA docking to the agonist binding site of the GABAA receptor.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Pentameric ligand-gated ion channel ELIC is activated by GABA and modulated by benzodiazepines

Radovan Spurny; Joachim Ramerstorfer; Kerry L. Price; Marijke Brams; Margot Ernst; Hugues Nury; Mark H.P. Verheij; Pierre Legrand; Daniel Bertrand; Sonia Bertrand; Dennis A. Dougherty; Iwan J. P. de Esch; Pierre-Jean Corringer; Werner Sieghart; Sarah C. R. Lummis; Chris Ulens

GABAA receptors are pentameric ligand-gated ion channels involved in fast inhibitory neurotransmission and are allosterically modulated by the anxiolytic, anticonvulsant, and sedative-hypnotic benzodiazepines. Here we show that the prokaryotic homolog ELIC also is activated by GABA and is modulated by benzodiazepines with effects comparable to those at GABAA receptors. Crystal structures reveal important features of GABA recognition and indicate that benzodiazepines, depending on their concentration, occupy two possible sites in ELIC. An intrasubunit site is adjacent to the GABA-recognition site but faces the channel vestibule. A second intersubunit site partially overlaps with the GABA site and likely corresponds to a low-affinity benzodiazepine-binding site in GABAA receptors that mediates inhibitory effects of the benzodiazepine flurazepam. Our study offers a structural view how GABA and benzodiazepines are recognized at a GABA-activated ion channel.


Biophysical Journal | 2003

Prediction of 5-HT3 Receptor Agonist-Binding Residues Using Homology Modeling

David C. Reeves; Muhammed Sayed; Pak-Lee Chau; Kerry L. Price; Sarah C. R. Lummis

5-HT(3) receptors demonstrate significant structural and functional homology to other members of the Cys-loop ligand-gated ion channel superfamily. The extracellular domains of these receptors share similar sequence homology (approximately 20%) with Limnaea acetylcholine binding protein, for which an x-ray crystal structure is available. We used this structure as a template for computer-based homology modeling of the 5-HT(3) receptor extracellular domain. AutoDock software was used to dock 5-HT into the putative 5-HT(3) receptor ligand-binding site, resulting in seven alternative energetically favorable models. Residues located no more than 5 A from the docked 5-HT were identified for each model; of these, 12 were found to be common to all seven models with five others present in only certain models. Some docking models reflected the cation-pi interaction previously demonstrated for W183, and data from these and other studies were used to define our preferred models.


Journal of Biological Chemistry | 2013

Multisite Binding of a General Anesthetic to the Prokaryotic Pentameric Erwinia chrysanthemi Ligand-gated Ion Channel (ELIC)

Radovan Spurny; Bert Billen; Rebecca J. Howard; Marijke Brams; Sarah Debaveye; Kerry L. Price; David A. Weston; Sergei V. Strelkov; Jan Tytgat; Sonia Bertrand; Daniel Bertrand; Sarah C. R. Lummis; Chris Ulens

Background: Pentameric ligand-gated ion channels are modulated by general anesthetics. Results: The crystal structure of ELIC in complex with bromoform reveals anesthetic binding in the channel pore and in novel sites in the transmembrane and extracellular domain. Conclusion: General anesthetics allosterically modulate channel function via multisite binding. Significance: Our data reveal detailed insight into multisite recognition of general anesthetics at the structural level. Pentameric ligand-gated ion channels (pLGICs), such as nicotinic acetylcholine, glycine, γ-aminobutyric acid GABAA/C receptors, and the Gloeobacter violaceus ligand-gated ion channel (GLIC), are receptors that contain multiple allosteric binding sites for a variety of therapeutics, including general anesthetics. Here, we report the x-ray crystal structure of the Erwinia chrysanthemi ligand-gated ion channel (ELIC) in complex with a derivative of chloroform, which reveals important features of anesthetic recognition, involving multiple binding at three different sites. One site is located in the channel pore and equates with a noncompetitive inhibitor site found in many pLGICs. A second transmembrane site is novel and is located in the lower part of the transmembrane domain, at an interface formed between adjacent subunits. A third site is also novel and is located in the extracellular domain in a hydrophobic pocket between the β7–β10 strands. Together, these results extend our understanding of pLGIC modulation and reveal several specific binding interactions that may contribute to modulator recognition, further substantiating a multisite model of allosteric modulation in this family of ion channels.


Journal of Biological Chemistry | 2012

5-HT3 receptors

Sarah C. R. Lummis

5-Hydroxytryptamine type 3 (5-HT3) receptors are cation-selective Cys loop receptors found in both the central and peripheral nervous systems. There are five 5-HT3 receptor subunits (A–E), and all functional receptors require at least one A subunit. Regions from noncontiguous parts of the subunit sequence contribute to the agonist-binding site, and the roles of a range of amino acid residues that form the binding pocket have been identified. Drugs that selectively antagonize 5-HT3 receptors (the “setrons”) are the current gold standard for treatment of chemotherapy-induced and postoperative nausea and vomiting and have potential for the treatment of a range of other conditions.

Collaboration


Dive into the Sarah C. R. Lummis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis A. Dougherty

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry A. Lester

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Chris Ulens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge