Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Delaney is active.

Publication


Featured researches published by Sarah Delaney.


Free Radical Research | 2012

Chemical and Biological Consequences of Oxidatively Damaged Guanine in DNA

Sarah Delaney; Daniel A. Jarem; Catherine B. Volle; Craig J. Yennie

Abstract Of the four native nucleosides, 2′-deoxyguanosine (dGuo) is most easily oxidized. Two lesions derived from dGuo are 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy)∙dGuo. Furthermore, while steady-state levels of 8-oxodGuo can be detected in genomic DNA, it is also known that 8-oxodGuo is more easily oxidized than dGuo. Thus, 8-oxodGuo is susceptible to further oxidation to form several hyperoxidized dGuo products. This review addresses the structural impact, the mutagenic and genotoxic potential, and biological implications of oxidatively damaged DNA, in particular 8-oxodGuo, Fapy∙dGuo, and the hyperoxidized dGuo products.


Biochemistry | 2009

Structure-Dependent DNA Damage and Repair in a Trinucleotide Repeat Sequence

Daniel A. Jarem; Nicole R. Wilson; Sarah Delaney

Triplet repeat sequences, such as CAG/CTG, expand in the human genome to cause several neurological disorders. As part of the expansion process the formation of non-B DNA conformations by the repeat sequence has previously been proposed. Furthermore, the base excision repair enzyme 7,8-dihydro-8-oxoguanine glycosylase (OGG1) has recently been implicated in the repeat expansion [Kovtun, I. V., Liu, Y., Bjoras, M., Klugland, A., Wilson, S. H., and McMurray, C. T. (2007) Nature 447, 447-452]. In this work we have found that the non-B conformation adopted by (CAG)(10), a hairpin, is hypersusceptible to DNA damage relative to the (CAG)(10)/(CTG)(10) duplex and, in particular, that a hot spot for DNA damage exists. Specifically, we find that a single guanine in the loop of the hairpin is susceptible to modification by peroxynitrite. Interestingly, we find that human OGG1 (hOGG1) is able to excise 7,8-dihydro-8-oxoguanine (8-oxoG) from the loop of a hairpin substrate, albeit with a marked decrease in efficiency relative to duplex substrates; the hOGG1 enzyme removes 8-oxoG from the loop of a hairpin with a rate that is approximately 700-fold slower than that observed for DNA duplex. Thus, while damage is preferentially generated in the loop of the hairpin, DNA repair is less efficient. These observed structure-dependent patterns of DNA damage and repair may contribute to the OGG1-dependent mechanism of trinucleotide repeat expansion.


Journal of Biological Chemistry | 2007

DNA polymerase V allows bypass of toxic guanine oxidation products in vivo

William L. Neeley; Sarah Delaney; Yuriy O. Alekseyev; Daniel F. Jarosz; James C. Delaney; Graham C. Walker; John M. Essigmann

Reactive oxygen and nitrogen radicals produced during metabolic processes, such as respiration and inflammation, combine with DNA to form many lesions primarily at guanine sites. Understanding the roles of the polymerases responsible for the processing of these products to mutations could illuminate molecular mechanisms that correlate oxidative stress with cancer. Using M13 viral genomes engineered to contain single DNA lesions and Escherichia coli strains with specific polymerase (pol) knockouts, we show that pol V is required for efficient bypass of structurally diverse, highly mutagenic guanine oxidation products in vivo. We also find that pol IV participates in the bypass of two spiroiminodihydantoin lesions. Furthermore, we report that one lesion, 5-guanidino-4-nitroimidazole, is a substrate for multiple SOS polymerases, whereby pol II is necessary for error-free replication and pol V for error-prone replication past this lesion. The results spotlight a major role for pol V and minor roles for pol II and pol IV in the mechanism of guanine oxidation mutagenesis.


Accounts of Chemical Research | 2014

A chemical and kinetic perspective on base excision repair of DNA.

Kelly M. Schermerhorn; Sarah Delaney

Conspectus Our cellular genome is continuously exposed to a wide spectrum of exogenous and endogenous DNA damaging agents. These agents can lead to formation of an extensive array of DNA lesions including single- and double-stranded breaks, inter- and intrastrand cross-links, abasic sites, and modification of DNA nucleobases. Persistence of these DNA lesions can be both mutagenic and cytotoxic, and can cause altered gene expression and cellular apoptosis leading to aging, cancer, and various neurological disorders. To combat the deleterious effects of DNA lesions, cells have a variety of DNA repair pathways responsible for restoring damaged DNA to its canonical form. Here we examine one of those repair pathways, the base excision repair (BER) pathway, a highly regulated network of enzymes responsible for repair of modified nucleobase and abasic site lesions. The enzymes required to reconstitute BER in vitro have been identified, and the repair event can be considered to occur in two parts: (1) excision of the modified nucleobase by a DNA glycosylase, and (2) filling the resulting “hole” with an undamaged nucleobase by a series of downstream enzymes. DNA glycosylases, which initiate a BER event, recognize and remove specific modified nucleobases and yield an abasic site as the product. The abasic site, a highly reactive BER intermediate, is further processed by AP endonuclease 1 (APE1), which cleaves the DNA backbone 5′ to the abasic site, generating a nick in the DNA backbone. After action of APE1, BER can follow one of two subpathways, the short-patch (SP) or long-patch (LP) version, which differ based on the number of nucleotides a polymerase incorporates at the nick site. DNA ligase is responsible for sealing the nick in the backbone and regenerating undamaged duplex. Not surprisingly, and consistent with the idea that BER maintains genetic stability, deficiency and/or inactivity of BER enzymes can be detrimental and result in cancer. Intriguingly, this DNA repair pathway has also been implicated in causing genetic instability by contributing to the trinucleotide repeat expansion associated with several neurological disorders. Within this Account, we outline the chemistry of the human BER pathway with a mechanistic focus on the DNA glycosylases that initiate the repair event. Furthermore, we describe kinetic studies of many BER enzymes as a means to understand the complex coordination that occurs during this highly regulated event. Finally, we examine the pitfalls associated with deficiency in BER activity, as well as instances when BER goes awry.


Biochemistry | 2010

AGG Interruptions in (CGG)n DNA Repeat Tracts Modulate the Structure and Thermodynamics of Non-B Conformations in Vitro

Daniel A. Jarem; Lauren V. Huckaby; Sarah Delaney

The trinucleotide repeat sequence CGG/CCG is known to expand in the human genome. This expansion is the primary pathogenic signature of fragile X syndrome, which is the most common form of inherited mental retardation. It has been proposed that formation of non-B conformations by the repetitive sequence contributes to the expansion mechanism. It is also known that the CGG/CCG repeat sequence of healthy individuals, which is not prone to expansion, contains AGG/CCT interruptions every 8-11 CGG/CCG repeats. Using DNA containing 19 or 39 CGG repeats, we have found that both the position and number of interruptions modulate the non-B conformation adopted by the repeat sequence. Analysis by chemical probes revealed larger loops and the presence of bulges for sequences containing interruptions. Additionally, using optical analysis and calorimetry, the effect of these structural changes on the thermodynamic stability of the conformation has been quantified. Notably, changing even one nucleotide, as occurs when CGG is replaced with an AGG interruption, causes a measurable decrease in the stability of the conformation adopted by the repeat sequence. These results provide insight into the role interruptions may play in preventing expansion in vivo and also contribute to our understanding of the relationship between non-B conformations and trinucleotide repeat expansion.


Biochemistry | 2012

CAG/CTG repeats alter the affinity for the histone core and the positioning of DNA in the nucleosome.

Catherine B. Volle; Sarah Delaney

Trinucleotide repeats (TNRs) occur throughout the genome, and their expansion has been linked to several neurodegenerative disorders, including Huntingtons disease. TNRs have been studied using both oligonucleotides and plasmids; however, less is know about how repetitive DNA responds to genomic packaging. Here, we investigate the behavior of CAG/CTG repeats incorporated into nucleosome core particles, the most basic unit of chromatin packaging. To assess the general interaction between CAG/CTG repeats and the histone core, we determined the efficiency with which various TNR-containing DNA substrates form nucleosomes, revealing that even short CAG/CTG tracts are robust incorporators. However, the presence of the Huntington gene flanking sequence (htt) decreases the rate of incorporation. Enzymatic and chemical probing revealed repositioning of the DNA in the nucleosome as the number of CAG/CTG repeats increased, regardless of the flanking sequence. Notably, the periodicity of the repeat tract remained unchanged as a function of length and is consistently 10.7 bp per helical turn. In contrast, the periodicity of the nonrepetitive flanking sequence varies and is smaller than the repeat tract at ~10.0-10.5 bp per turn. Furthermore, while the CAG/CTG repeats remain as a canonical duplex in the nucleosome, nucleosome formation causes kinking in a secondary repeat tract in the htt gene, comprised of CCG/CGG repeats. This work highlights the innate ability of CAG/CTG repeats to incorporate and to position in nucleosomes and how that behavior is modulated by the htt flanking sequence. In addition, it illuminates the differences in packaging of healthy and diseased length repeat tracts within the genome.


Journal of Biological Chemistry | 2010

Mechanistic Studies of Hairpin to Duplex Conversion for Trinucleotide Repeat Sequences

Amalia Ávila Figueroa; Sarah Delaney

The expansion of a trinucleotide repeat sequence, such as CAG/CTG, has been pinpointed as the molecular basis for a number of neurodegenerative disorders. It has been proposed that as part of the expansion process, these repetitive sequences adopt non-B conformations such as hairpins. However, the prevalence of these hairpins and their contributions to the DNA expansion have not been well defined. In this work, we utilized a molecular beacon strategy to examine the stability of the (CAG)10 hairpin and also its behavior in the presence of the complementary (CTG)10 hairpin. We find that the two hairpins represent kinetically trapped species that can coexist but irreversibly convert to duplex upon thermal induction. Furthermore, as monitored by fluorescence and optical analysis, modifications to the base composition of either the loop or stem region have a profound effect on the ability of the trinucleotide repeat hairpins to convert to duplex. Additionally, the rate of duplex formation is also reduced with these loop and stem-modified hairpins. These results demonstrate that the trinucleotide repeat hairpins can convert to duplex via two independent mechanisms as follows: the loop-loop interactions found in kissing hairpins or the stem-stem interactions of a cruciform.


Biochemistry | 2012

Trinucleotide repeat DNA alters structure to minimize the thermodynamic impact of 8-oxo-7,8-dihydroguanine.

Catherine B. Volle; Daniel A. Jarem; Sarah Delaney

In the phenomenon of trinucleotide repeat (TNR) expansion, an important interplay exists between DNA damage repair of 8-oxo-7,8-dihydroguanine (8-oxoG) and noncanonical structure formation. We show that TNR DNA adapts its structure to accommodate 8-oxoG. Using chemical probe analysis, we find that CAG repeats composing the stem-loop arm of a three-way junction alter the population of structures in response to 8-oxoG by positioning the lesion at or near the loop. Furthermore, we find that oligonucleotides composed of odd-numbered repeat sequences, which form populations of two structures, will also alter their structure to place 8-oxoG in the loop. However, sequences with an even number of repeats do not display this behavior. Analysis by differential scanning calorimetry indicates that when the lesion is located within the loop, there are no significant changes to the thermodynamic parameters as compared to the DNA lacking 8-oxoG. This contrasts with the enthalpic destabilization observed when 8-oxoG is base-paired to C and indicates that positioning 8-oxoG in the loop avoids the thermodynamic penalty associated with 8-oxoG base-pairing. Since formation of stem-loop hairpins is proposed to facilitate TNR expansion, these results highlight the importance of defining the structural consequences of DNA damage.


Biochemistry | 2011

Structure of even/odd trinucleotide repeat sequences modulates persistence of non-B conformations and conversion to duplex

Amalia Ávila Figueroa; Douglas Cattie; Sarah Delaney

Expansion of trinucleotide repeats (TNR) has been implicated in the emergence of neurodegenerative diseases. Formation of non-B conformations such as hairpins by these repeat sequences during DNA replication and/or repair has been proposed as a contributing factor to expansion. In this work we employed a combination of fluorescence, chemical probing, optical melting, and gel shift assays to characterize the structure of a series of (CTG)(n) sequences and the kinetic parameters describing their interaction with a complementary sequence. Our structure-based experiments using chemical probing reveal that sequences containing an even or odd number of CTG repeats adopt stem-loop hairpins that differ from one another by the absence or presence of a stem overhang. Furthermore, we find that this structural difference dictates the rate at which the TNR hairpins convert to duplex with a complementary CAG sequence. Indeed, the rate constant describing conversion to (CAG)(10)/(CTG)(n) duplex is slower for sequences containing an even number of CTG repeats than for sequences containing an odd number of repeats. Thus, when both the CAG and CTG hairpins have an even number of the repeats, they display a longer lifetime relative to when the CTG hairpin has an odd number of repeats. The difference in lifetimes observed for these TNR hairpins has implications toward their persistence during DNA replication or repair events and could influence their predisposition toward expansion. Taken together, these results contribute to our understanding of trinucleotide repeats and the factors that regulate persistence of hairpins in these repetitive sequences and conversion to canonical duplex.


BMC Biochemistry | 2013

AGG/CCT interruptions affect nucleosome formation and positioning of healthy-length CGG/CCG triplet repeats

Catherine B. Volle; Sarah Delaney

BackgroundFragile X Syndrome (FXS), the most common inherited form of mental retardation, is caused by expansion of a CGG/CCG repeat tract in the 5′-untranslated region of the fragile X mental retardation (FMR1) gene, which changes the functional organization of the gene from euchromatin to heterochromatin. Interestingly, healthy-length repeat tracts possess AGG/CCT interruptions every 9–10 repeats, and clinical data shows that loss of these interruptions is linked to expansion of the repeat tract to disease-length. Thus, it is important to understand how these interruptions alter the behavior of the repeat tract in the packaged gene.ResultsTo investigate how uninterrupted and interrupted CGG/CCG repeat tracts interact with the histone core, we designed experiments using the nucleosome core particle, the most basic unit of chromatin packaging. Using DNA containing 19 CGG/CCG repeats, flanked by either a nucleosome positioning sequence or the FMR1 gene sequence, we determined that the addition of a single AGG/CCT interruption modulates both the ability of the CGG/CCG repeat DNA to incorporate into a nucleosome and the rotational and translational position of the repeat DNA around the histone core when flanked by the nucleosome positioning sequence. The presence of these interruptions also alters the periodicity of the DNA in the nucleosome; interrupted repeat tracts have a greater periodicity than uninterrupted repeats.ConclusionsThis work defines the ability of AGG/CCT interruptions to modulate the behavior of the repeat tract in the packaged gene and contributes to our understanding of the role that AGG/CCT interruptions play in suppressing expansion and maintaining the correct functional organization of the FMR1 gene, highlighting a protective role played by the interruptions in genomic packaging.

Collaboration


Dive into the Sarah Delaney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacqueline K. Barton

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge