Sarah Diab
University of South Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah Diab.
Chemistry & Biology | 2014
Sarah Diab; Malika Kumarasiri; Mingfeng Yu; Theodosia Teo; Christopher G. Proud; Robert W. Milne; Shudong Wang
Mitogen-activated protein kinase (MAPK)-interacting kinases (Mnks) regulate the initiation of translation through phosphorylation of eukaryotic initiation factor 4E (eIF4E). Mnk-mediated eIF4E activation promotes cancer development and progression. While the phosphorylation of eIF4E is necessary for oncogenic transformation, the kinase activity of Mnks seems dispensable for normal development. For this reason, pharmacological inhibition of Mnks could represent an ideal mechanism-based and nontoxic therapeutic strategy for cancer treatment. In this review, we discuss the current understanding of Mnk biological roles, structures, and functions, as well as clinical implications. Importantly, we propose different strategies for identification of highly selective small molecule inhibitors of Mnks, including exploring a structural feature of their kinase domain, DFD motif, which is unique within the human kinome. We also argue that a combined targeting of Mnks and other pathways should be considered given the complexity of cancer.
ChemMedChem | 2014
Sarah Diab; Theodosia Teo; Malika Kumarasiri; Peng Li; Mingfeng Yu; Frankie Lam; Sunita K.C. Basnet; Matthew J. Sykes; Hugo Albrecht; Robert W. Milne; Shudong Wang
Phosphorylation of eIF4E by human mitogen‐activated protein kinase (MAPK)‐interacting kinases (Mnks) is crucial for human tumourigenesis and development. Targeting Mnks may provide a novel anticancer therapeutic strategy. However, the lack of selective Mnk inhibitors has so far hampered pharmacological target validation and clinical drug development. Herein, we report, for the first time, the discovery of a series of 5‐(2‐(phenylamino)pyrimidin‐4‐yl)thiazole‐2(3H)‐one derivatives as Mnk inhibitors. Several derivatives demonstrate very potent Mnk2 inhibitory activity. The most active and selective compounds were tested against a panel of cancer cell lines, and the results confirm the cell‐type‐specific effect of these Mnk inhibitors. Detailed cellular mechanistic studies reveal that Mnk inhibitors are capable of reducing the expression level of anti‐apoptotic protein Mcl‐1, and of promoting apoptosis in MV4‐11 acute myeloid leukaemia cells.
European Journal of Medicinal Chemistry | 2015
Mingfeng Yu; Peng Li; Sunita K.C. Basnet; Malika Kumarasiri; Sarah Diab; Theodosia Teo; Hugo Albrecht; Shudong Wang
Phosphorylation of the eukaryotic initiation factor 4E (eIF4E) by mitogen-activated protein kinase (MAPK)-interacting kinases (Mnks) is essential for oncogenesis but unnecessary for normal development. Thus, pharmacological inhibition of Mnks may offer an effective and non-toxic anti-cancer therapeutic strategy. Herein, we report the discovery of 4-(dihydropyridinon-3-yl)amino-5-methylthieno[2,3-d]pyrimidine derivatives as potent Mnk inhibitors. Docking study of 7a in Mnk2 suggests that the compound is stabilised in the ATP binding site through multiple hydrogen bonds and hydrophobic interaction. Cellular mechanistic studies on MV-4-11 cells with leads 7a, 8e and 8f reveal that they are able to down-regulate the phosphorylated eIF4E, Mcl-1 and cyclin D1, and induce apoptosis.
Endocrine-related Cancer | 2016
Muhammed H. Rahaman; Malika Kumarasiri; Laychiluh B. Mekonnen; Mingfeng Yu; Sarah Diab; Hugo Albrecht; Robert W. Milne; Shudong Wang
Cyclin-dependent kinase 9 (CDK9) is a key transcriptional regulator and a lucrative target for cancer treatment. Targeting CDK9 can effectively confine the hyperactivity of androgen receptor and the constitutive expression of anti-apoptotic proteins; both being main causes of prostate cancer (PCa) development and progression. In castrate-resistant PCa, traditional therapies that only target androgen receptor (AR) have become obsolete due to reprograming in AR activity to make the cells independent of androgen. CDK9 inhibitors may provide a new and better therapeutic opportunity over traditional treatment options by targeting both androgen receptor activity and anti-apoptotic proteins, improving the chances of positive outcomes, especially in patients with the advanced disease. This review focuses on biological functions of CDK9, its involvement with AR and the potential for therapeutic opportunities in PCa treatment.
European Journal of Medicinal Chemistry | 2015
Theodosia Teo; Yuchao Yang; Mingfeng Yu; Sunita K.C. Basnet; Todd A. Gillam; Jinqiang Hou; Raffaella Schmid; Malika Kumarasiri; Sarah Diab; Hugo Albrecht; Matthew J. Sykes; Shudong Wang
Deregulation of protein synthesis is a common event in cancer. As MAPK-interacting kinases (Mnks) play critical roles in regulation of protein synthesis, they have emerged as novel anti-cancer targets. Mnks phosphorylate eukaryotic initiation factor 4E (eIF4E) and promote eIF4E-mediated oncogenic activity. Given that the kinase activity of Mnks is essential for oncogenesis but is dispensable for normal development, the discovery of potent and selective pharmacological Mnk inhibitors provides pharmacological target validation and offers a new strategy for cancer treatment. Herein, comprehensive in silico screening approaches were deployed, and three thieno[2,3-d]pyrimidine and pyrazolo[3,4-d]pyrimidine derivatives were identified as hit compounds. Further chemical modification of thieno[2,3-d]pyrimidine derivative 3 has given rise to a series of highly potent Mnk2 inhibitors that could be potential leads for the treatment of acute myeloid leukemia.
Journal of Medicinal Chemistry | 2014
Tiangong Lu; Aik Wye Goh; Mingfeng Yu; Julian Adams; Frankie Lam; Theodosia Teo; Peng Li; Ben Noll; Longjin Zhong; Sarah Diab; Osama Chahrour; Anran Hu; Abdullahi Y. Abbas; Xiangrui Liu; Shiliang Huang; Christopher J. Sumby; Robert W. Milne; Carol Midgley; Shudong Wang
ON01910.Na is a highly effective anticancer agent that induces mitotic arrest and apoptosis. Clinical studies with ON01910 in cancer patients have shown efficacy along with an impressive safety profile. While ON01910 is highly active against cancer cells, it has a low oral availability and requires continuous intravenous infusion or multiple gram doses to ensure sufficient drug exposure for biological activity in patients. We have identified two novel series of styrylsulfonyl-methylpyridines. Lead compounds 8, 9a, 18 and 19a are highly potent mitotic inhibitors and selectively cytotoxic to cancer cells. Impressively, these compounds possess excellent pharmaceutical properties and two lead drug candidates 9a and 18 demonstrated antitumor activities in animal models.
Molecular Pharmacology | 2015
Sunita K.C. Basnet; Sarah Diab; Raffaella Schmid; Mingfeng Yu; Yuchao Yang; Todd A. Gillam; Theodosia Teo; Peng Li; Tom Peat; Hugo Albrecht; Shudong Wang
Elevated levels of phosphorylated eukaryotic initiation factor 4E (eIF4E) have been implicated in many tumor types, and mitogen activated protein kinase-interacting kinases (Mnks) are the only known kinases that phosphorylate eIF4E at Ser209. The phosphorylation of eIF4E is essential for oncogenic transformation but is of no significance to normal growth and development. Pharmacological inhibition of Mnks therefore provides a nontoxic and effective strategy for cancer therapy. However, a lack of specific Mnk inhibitors has confounded pharmacological target validation and clinical development. Herein, we report the identification of a novel series of Mnk inhibitors and their binding modes. A systematic workflow has been established to distinguish between type III and type I/II inhibitors. A selection of 66 compounds was tested for Mnk1 and Mnk2 inhibition, and 9 out of 20 active compounds showed type III interaction with an allosteric site of the proteins. Most of the type III inhibitors exhibited dual Mnk1 and Mnk2 activities and demonstrated potent antiproliferative properties against the MV4-11 acute myeloid leukemia cell line. Interestingly, ATP-/substrate-competitive inhibitors were found to be highly selective for Mnk2, with little or no activity for Mnk1. Our study suggests that Mnk1 and Mnk2 share a common structure of the allosteric inhibitory binding site but possess different structural features of the ATP catalytic domain. The findings will assist in the future design and development of Mnk targeted anticancer therapeutics.
Oncotarget | 2016
Peng Li; Sarah Diab; Mingfeng Yu; Julian Adams; Saiful Islam; Sunita K.C. Basnet; Hugo Albrecht; Robert W. Milne; Shudong Wang
Cytarabine (Ara-C) is a first line clinical therapeutic agent for treatment of acute myeloid leukemia (AML). However, this therapy is limited due to high rate of resistance and relapse. Recent research has revealed that the poor prognosis and resistance to Ara-C in AML were associated with its abnormally activated MAPK pathways. In this study, we showed a strong synergistic effect of Ara-C with either our Mnk inhibitor (MNKI-8e) or short hairpin RNA (shRNA) mediated knockdown of Mnks in MV4-11 AML cells. We investigated the underlying mechanisms for this synergism. We showed that both MNKI-8e and Mnk shRNAs enhanced the ability of Ara-C to induce apoptosis. We found that Ara-C increased the phosphorylation of Erk1/2, p38 and eIF4E, which correlated with an enhanced level of anti-apoptotic Mcl-1 protein. Inhibition of Mnk activity suppressed the Ara-C-induced MAPK activity, and thus enhanced apoptosis in MV4-11 cells. Taken together, our study suggests that MAPK-Mnk-eIF4E pathway plays a critical role in Ara-C-treated MV4-11 cells and targeting Mnk may be a promising therapeutic strategy for sensitizing leukemic cells to Ara-C therapy.
Future Medicinal Chemistry | 2016
Sarah Diab; Peng Li; Sunita K.C. Basnet; Jingfeng Lu; Mingfeng Yu; Hugo Albrecht; Robert W. Milne; Shudong Wang
The discovery of small molecules that selectively inhibit Mnks is considered of paramount importance towards deciphering the exact role of these proteins in carcinogenesis and to further validate them as anti-cancer drug targets. However, the dearth of structural information of Mnks is a major hurdle. This study unveils the 7H-pyrrolo[2,3-d]pyrimidine derivatives as potent inhibitors of Mnks. ATP and substrate competition assays showed that this scaffold interacts with the ATP binding site, but not with the substrate site. Screened against a panel of cancer cells, Mnk inhibitors were most potent against MV4-11 acute myeloid leukemia cells. The induction of apoptosis was shown to be mediated by downregulation of Mcl-1.
European Journal of Medicinal Chemistry | 2017
Sarah Diab; Ahmad M. Abdelaziz; Peng Li; Theodosia Teo; Sunita K.C. Basnet; Ben Noll; Muhammed H. Rahaman; Jingfeng Lu; Jinqiang Hou; Mingfeng Yu; Le Bt; Hugo Albrecht; Robert W. Milne; Shudong Wang