Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Dorner is active.

Publication


Featured researches published by Sarah Dorner.


Water Research | 2012

Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: A monitoring and treatment challenge

Arash Zamyadi; Sherri L. MacLeod; Yan Fan; Natasha McQuaid; Sarah Dorner; Sébastien Sauvé; Michèle Prévost

The detection of cyanobacteria and their associated toxins has intensified in recent years in both drinking water sources and the raw water of drinking water treatment plants (DWTPs). The objectives of this study were to: 1) estimate the breakthrough and accumulation of toxic cyanobacteria in water, scums and sludge inside a DWTP, and 2) to determine whether chlorination can be an efficient barrier to the prevention of cyanotoxin breakthrough in drinking water. In a full scale DWTP, the fate of cyanobacteria and their associated toxins was studied after the addition of coagulant and powdered activated carbon, post clarification, within the clarifier sludge bed, after filtration and final chlorination. Elevated cyanobacterial cell numbers (4.7 × 10(6)cells/mL) and total microcystins concentrations (up to 10 mg/L) accumulated in the clarifiers of the treatment plant. Breakthrough of cells and toxins in filtered water was observed. Also, a total microcystins concentration of 2.47 μg/L was measured in chlorinated drinking water. Cyanobacterial cells and toxins from environmental bloom samples were more resistant to chlorination than results obtained using laboratory cultured cells and dissolved standard toxins.


Chemosphere | 2012

Fecal coliforms, caffeine and carbamazepine in stormwater collection systems in a large urban area

Sébastien Sauvé; Khadija Aboulfadl; Sarah Dorner; Pierre Payment; Guy Deschamps; Michèle Prévost

Water samples from streams, brooks and storm sewer outfall pipes that collect storm waters across the Island of Montréal were analyzed for caffeine, carbamazepine and fecal coliforms. All samples contained various concentrations of these tracers, indicating a widespread sanitary contamination in urban environments. Fecal coliforms and caffeine levels ranged over several orders of magnitude with a modest correlation between caffeine and fecal coliforms (R(2) value of 0.558). An arbitrary threshold of 400 ng caffeine L(-1) allows us to identify samples with an elevated fecal contamination, as defined by more than 200 colony-forming units per 100 mL (cfu 100 mL(-1)) of fecal coliforms. Low caffeine levels were sporadically related to high fecal coliform counts. Lower levels of caffeine and fecal coliforms were observed in the brooks while the larger streams and storm water discharge points contained over ten times more. The carbamazepine data showed little or no apparent correlation to caffeine. These data suggest that this storm water collection system, located in a highly urbanized urban environment, is widely contaminated by domestic sewers as indicated by the ubiquitous presence of fecal contaminants as well as caffeine and carbamazepine. Caffeine concentrations were relatively well correlated to fecal coliforms, and could potentially be used as a chemical indicator of the level of contamination by sanitary sources. The carbamazepine data was not significantly correlated to fecal coliforms and of little use in this dataset.


Water Research | 2013

Temporal variability of combined sewer overflow contaminants: Evaluation of wastewater micropollutants as tracers of fecal contamination

Anne-Sophie Madoux-Humery; Sarah Dorner; Sébastien Sauvé; Khadija Aboulfadl; Martine Galarneau; Pierre Servais; Michèle Prévost

A monitoring program was initiated for two sewage outfalls (OA and OB) with different land uses (mainly residential versus institutional) over the course of a year. Eleven CSO events resulting from fall and summer precipitations and a mixture of snowmelt and precipitation in late winter and early spring were monitored. Median concentrations measured in CSOs were 1.5 × 10(6)Escherichia coli/100 mL, 136.0 mg/L of Total Suspended Solids (TSS), 4599.0 ng/L of caffeine (CAF), 158.9 ng/L of carbamazepine (CBZ), in outfall OA and 5.1 × 10(4)E. coli/100 mL, 167.0 mg TSS/L, 300.8 ng CAF/L, 4.1 ng CBZ/L, in outfall OB. Concentration dynamics in CSOs were mostly related to the dilution by stormwater and the time of day of the onset of overflows. Snowmelt was identified as a critical period with regards to the protection of drinking water sources given the high contaminant concentrations and long duration of events in addition to a lack of restrictions on overflows during this period. Correlations among measured parameters reflected the origins and transport pathways of the contaminants, with E. coli being correlated with CBZ. TSS were not correlated with E. coli because E. coli was found to be mostly associated with raw sewage whereas TSS were additionally from the resuspension of in-sewer deposits and surface runoff. In receiving waters, E. coli remained the best indicator of fecal contamination in strongly diluted water samples as compared to WWMPs because WWMPs can be diluted to below their detection limits.


Water Research | 2013

Species-dependence of cyanobacteria removal efficiency by different drinking water treatment processes

Arash Zamyadi; Sarah Dorner; Sébastien Sauvé; Donald Ellis; Anouka Bolduc; Christian Bastien; Michèle Prévost

Accumulation and breakthrough of several potentially toxic cyanobacterial species within drinking water treatment plants (DWTP) have been reported recently. The objectives of this project were to test the efficiency of different treatment barriers in cyanobacterial removal. Upon observation of cyanobacterial blooms, intensive sampling was conducted inside a full scale DWTP at raw water, clarification, filtration and oxidation processes. Samples were taken for microscopic speciation/enumeration and microcystins analysis. Total cyanobacteria cell numbers exceeded World Health Organisation and local alert levels in raw water (6,90,000 cells/mL). Extensive accumulation of cyanobacteria species in sludge beds and filters, and interruption of treatment were observed. Aphanizomenon cells were poorly coagulated and they were not trapped efficiently in the sludge. It was also demonstrated that Aphanizomenon cells passed through and were not retained over the filter. However, Microcystis, Anabaena, and Pseudanabaena cells were adequately removed by clarification and filtration processes. The breakthrough of non toxic cyanobacterial cells into DWTPs could also result in severe treatment disruption leading to plant shutdown. Application of intervention threshold values restricted to raw water does not take into consideration the major long term accumulation of potentially toxic cells in the sludge and the risk of toxins release. Thus, a sampling regime inside the plant adapted to cyanobacterial occurrence and intensity is recommended.


Science of The Total Environment | 2014

Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water

Laurène Autixier; Alain Mailhot; Samuel Bolduc; Anne-Sophie Madoux-Humery; Martine Galarneau; Michèle Prévost; Sarah Dorner

The implications of climate change and changing precipitation patterns need to be investigated to evaluate mitigation measures for source water protection. Potential solutions need first to be evaluated under present climate conditions to determine their utility as climate change adaptation strategies. An urban drainage network receiving both stormwater and wastewater was studied to evaluate potential solutions to reduce the impact of combined sewer overflows (CSOs) in a drinking water source. A detailed hydraulic model was applied to the drainage basin to model the implementation of best management practices at a drainage basin scale. The model was calibrated and validated with field data of CSO flows for seven events from a survey conducted in 2009 and 2010. Rain gardens were evaluated for their reduction of volumes of water entering the drainage network and of CSOs. Scenarios with different levels of implementation were considered and evaluated. Of the total impervious area within the basin directly connected to the sewer system, a maximum of 21% could be alternately directed towards rain gardens. The runoff reductions for the entire catchment ranged from 12.7% to 19.4% depending on the event considered. The maximum discharged volume reduction ranged from 13% to 62% and the maximum peak flow rate reduction ranged from 7% to 56%. Of concern is that in-sewer sediment resuspension is an important process to consider with regard to the efficacy of best management practices aimed at reducing extreme loads and concentrations. Rain gardens were less effective for large events, which are of greater importance for drinking water sources. These practices could increase peak instantaneous loads as a result of greater in-sewer resuspension during large events. Multiple interventions would be required to achieve the objectives of reducing the number, total volumes and peak contaminant loads of overflows upstream of drinking water intakes.


Water Research | 2014

Estimating the risk of cyanobacterial occurrence using an index integrating meteorological factors: Application to drinking water production

Mouhamed Ndong; David F. Bird; Tri Nguyen-Quang; Marie-Laure de Boutray; Arash Zamyadi; Brigitte Vinçon-Leite; Bruno J. Lemaire; Michèle Prévost; Sarah Dorner

The sudden appearance of toxic cyanobacteria (CB) blooms is still largely unpredictable in waters worldwide. Many post-hoc explanations for CB bloom occurrence relating to physical and biochemical conditions in lakes have been developed. As potentially toxic CB can accumulate in drinking water treatment plants and disrupt water treatment, there is a need for water treatment operators to determine whether conditions are favourable for the proliferation and accumulation of CB in source waters in order to adjust drinking water treatment accordingly. Thus, a new methodology with locally adaptable variables is proposed in order to have a single index, f(p), related to various environmental factors such as temperature, wind speed and direction. The index is used in conjunction with real time monitoring data to determine the probability of CB occurrence in relation to meteorological factors, and was tested at a drinking water intake in Missisquoi Bay, a shallow transboundary bay in Lake Champlain, Québec, Canada. These environmental factors alone were able to explain a maximum probability of 68% that a CB bloom would occur at the drinking water treatment plant. Nutrient limitation also influences CB blooms and intense blooms only occurred when the dissolved inorganic nitrogen (DIN) to total phosphorus (TP) mass ratio was below 3. Additional monitoring of DIN and TP could be considered for these source waters prone to cyanobacterial blooms to determine periods of favourable growth. Real time monitoring and the use of the index could permit an adequate and timely response to CB blooms in drinking water sources.


Critical Reviews in Microbiology | 2014

Can E. coli or thermotolerant coliform concentrations predict pathogen presence or prevalence in irrigation waters

Yakov A. Pachepsky; Daniel R. Shelton; Sarah Dorner; Gene Whelan

Abstract An increase in food-borne illnesses in the United States has been associated with fresh produce consumption. Irrigation water presents recognized risks for microbial contamination of produce. Water quality criteria rely on indicator bacteria. The objective of this review was to collate and summarize experimental data on the relationships between pathogens and thermotolerant coliform (THT) and/or generic E. coli, specifically focusing on surface fresh waters used in or potentially suitable for irrigation agriculture. We analyzed peer-reviewed publications in which concentrations of E. coli or THT coliforms in surface fresh waters were measured along with concentrations of one or more of waterborne and food-borne pathogenic organisms. The proposed relationships were significant in 35% of all instances and not significant in 65% of instances. Coliform indicators alone cannot provide conclusive, non-site-specific and non-pathogen-specific information about the presence and/or concentrations of most important pathogens in surface waters suitable for irrigation. Standards of microbial water quality for irrigation can rely not only on concentrations of indicators and/or pathogens, but must include references to crop management. Critical information on microbial composition of actual irrigation waters to support criteria of microbiological quality of irrigation waters appears to be lacking and needs to be collected.


Water Research | 2014

Changes in Escherichia coli to Cryptosporidium ratios for various fecal pollution sources and drinking water intakes

Cindy Lalancette; Isabelle Papineau; Pierre Payment; Sarah Dorner; Pierre Servais; Benoit Barbeau; George D. Di Giovanni; Michèle Prévost

Assessing the presence of human pathogenic Cryptosporidium oocysts in surface water remains a significant water treatment and public health challenge. Most drinking water suppliers rely on fecal indicators, such as the well-established Escherichia coli (E. coli), to avoid costly Cryptosporidium assays. However, the use of E. coli has significant limitations in predicting the concentration, the removal and the transport of Cryptosporidium. This study presents a meta-analysis of E. coli to Cryptosporidium concentration paired ratios to compare their complex relationships in eight municipal wastewater sources, five agricultural fecal pollution sources and at 13 drinking water intakes (DWI) to a risk threshold based on US Environmental Protection Agency (USEPA) regulations. Ratios lower than the USEPA risk threshold suggested higher concentrations of oocysts in relation to E. coli concentrations, revealing an underestimed risk for Cryptosporidium based on E. coli measurements. In raw sewage (RS), high ratios proved E. coli (or fecal coliforms) concentrations were a conservative indicator of Cryptosporidium concentrations, which was also typically true for secondary treated wastewater (TWW). Removals of fecal indicator bacteria (FIB) and parasites were quantified in WWTPs and their differences are put forward as a plausible explanation of the sporadic ratio shift. Ratios measured from agricultural runoff surface water were typically lower than the USEPA risk threshold and within the range of risk misinterpretation. Indeed, heavy precipitation events in the agricultural watershed led to high oocyst concentrations but not to E. coli or enterococci concentrations. More importantly, ratios established in variously impacted DWI from 13 Canadian drinking water plants were found to be related to dominant fecal pollution sources, namely municipal sewage. In most cases, when DWIs were mainly influenced by municipal sewage, E. coli or fecal coliforms concentrations agreed with Cryptosporidium concentrations as estimated by the meta-analysis, but when DWIs were influenced by agricultural runoff or wildlife, there was a poor relationship. Average recovery values were available for 6 out of 22 Cryptosporidium concentration data sets and concomitant analysis demonstrated no changes in trends, with and without correction. Nevertheless, recovery assays performed along with every oocyst count would have enhanced the precision of this work. Based on our findings, the use of annual averages of E. coli concentrations as a surrogate for Cryptosporidium concentrations can result in an inaccurate estimate of the Cryptosporidium risk for agriculture impacted drinking water intakes or for intakes with more distant wastewater sources. Studies of upstream fecal pollution sources are recommended for drinking water suppliers to improve their interpretation of source water quality data.


Water Research | 2015

Fate of toxic cyanobacterial genera from natural bloom events during ozonation

Arash Zamyadi; Lucila Adriani Coral; Benoit Barbeau; Sarah Dorner; Flávio Rubens Lapolli; Michèle Prévost

Intense accumulation of toxic cyanobacteria cells inside plants, unsuccessful removal of cells and consequent breakthrough of cells and toxins into treated water have been increasingly documented. Removal or destabilisation of cells in the pre-treatment stage using pre-ozonation could be an efficient practice as ozonation has been proven to be effective for the removal of cells and toxins. However, several unknowns including the ozone demand, the potential release of cell-bound toxins and organic matter and their impact on treatment train needs to be addressed. The general objective of this work was to study the impact of direct ozonation on different potentially toxic cyanobacteria genera from natural blooms. Water samples from five cyanobacterial bloom events in Lake Champlain (Canada) were ozonated using 2-5 mg/L O3 for a contact time of maximum 10 min. Cyanobacterial taxonomic enumeration, cyanotoxins, organic matter and post-chlorination disinfection by-product formation potential analyses were conducted on all samples. Anabaena, Aphanizomenon, Microcystis and Pseudanabaena were detected in bloom water samples. Total cell numbers varied between 197,000 and 1,282,000 cells/mL prior to ozonation. Direct ozonation lysed (reduction in total cell numbers) 41%-80% of cells and reduced released toxins to below detection limits. Microcystis was the genus the least affected by ozonation. However, DOC releases of 0.6-3.5 mg/L were observed leading to maximum 86.92 μg/L and 61.56 μg/L additional total THMs (four trihalomethanes) and HAA6 (six haloacetic acids) formation, respectively. The results of this study demonstrate that vigilant application of pre-ozonation under certain treatment conditions would help to avoid extreme toxic cells accumulation within water treatment plants.


Water Research | 2017

The distribution dynamics and desorption behaviour of mobile pharmaceuticals and caffeine to combined sewer sediments

M. Hajj-Mohamad; H. Darwano; S. Vo Duy; Sébastien Sauvé; Michèle Prévost; Hans Peter H. Arp; Sarah Dorner

Pharmaceuticals are discharged to the environment from wastewater resource recovery facilities, sewer overflows, and illicit sewer connections. To understand the fate of pharmaceuticals, there is a need to better understand their sorption dynamics to suspended sediments (SS) and settled sediments (StS) in sewer systems. In this study, such sorption dynamics to both SS and StS were assessed using a batch equilibrium method under both static and dynamic conditions. Experiments were performed with natively occurring and artificially modified concentrations of sewer pharmaceuticals (acetaminophen, theophylline, carbamazepine, and a metabolite of carbamazepine) and caffeine. Differences in apparent distribution coefficients, Kd,app, between SS and StS were related to differences in their organic carbon (OC) content, and the practice of artificially modifying the concentration. Kd,app values of modified contaminant concentrations and high OC sediments were substantially higher. Pseudo-second order desorption rates for these mobile compounds were also quantified. Successive flushing events to simulate the addition of stormwater to sewer networks revealed that aqueous concentrations would not necessarily decrease, because the added water will rapidly return to equilibrium concentrations with the sediments. Sorption and desorption kinetics must be considered in addition to dilution, to avoid underestimating the influence of dilution on concentrations of pharmaceuticals discharged to the environment.

Collaboration


Dive into the Sarah Dorner's collaboration.

Top Co-Authors

Avatar

Michèle Prévost

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne-Sophie Madoux-Humery

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

Pierre Servais

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Arash Zamyadi

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natasha McQuaid

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

Sung Vo Duy

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Benoit Barbeau

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

David F. Bird

Université du Québec à Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge