Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah E. Allan is active.

Publication


Featured researches published by Sarah E. Allan.


Journal of Clinical Investigation | 2005

The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs

Sarah E. Allan; Laura Passerini; Rosa Bacchetta; Natasha K. Crellin; Minyue Dai; Paul C. Orban; Steven F. Ziegler; Maria Grazia Roncarolo; Megan K. Levings

Little is known about the molecules that control the development and function of CD4+ CD25+ Tregs. Recently, it was shown that the transcription factor FOXP3 is necessary and sufficient for the generation of CD4+ CD25+ Tregs in mice. We investigated the capacity of FOXP3 to drive the generation of suppressive CD4+ CD25+ Tregs in humans. Surprisingly, although ectopic expression of FOXP3 in human CD4+ T cells resulted in induction of hyporesponsiveness and suppression of IL-2 production, it did not lead to acquisition of significant suppressor activity in vitro. Similarly, ectopic expression of FOXP3delta2, an isoform found in human CD4+ CD25+ Tregs that lacks exon 2, also failed to induce the development of suppressor T cells. Moreover, when FOXP3 and FOXP3delta2 were simultaneously overexpressed, although the expression of several Treg-associated cell surface markers was significantly increased, only a modest suppressive activity was induced. These data indicate that in humans, overexpression of FOXP3 alone or together with FOXP3delta2 is not an effective method to generate potent suppressor T cells in vitro and suggest that factors in addition to FOXP3 are required during the process of activation and/or differentiation for the development of bona fide Tregs.


Journal of Immunology | 2005

Human CD4+ T Cells Express TLR5 and Its Ligand Flagellin Enhances the Suppressive Capacity and Expression of FOXP3 in CD4+CD25+ T Regulatory Cells

Natasha K. Crellin; Rosa Garcia; Omeed Hadisfar; Sarah E. Allan; Theodore S. Steiner; Megan K. Levings

Germline encoded pattern recognition receptors, such as TLRs, provide a critical link between the innate and adaptive immune systems. There is also evidence to suggest that pathogen-associated molecular patterns may have the capacity to modulate immune responses via direct effects on CD4+ T cells. Given the key role of both CD4+CD25+ T regulatory (Treg) cells and the TLR5 ligand flagellin in regulating mucosal immune responses, we investigated whether TLR5 may directly influence T cell function. We found that both human CD4+CD25+ Treg and CD4+CD25− T cells express TLR5 at levels comparable to those on monocytes and dendritic cells. Costimulation of effector T cells with anti-CD3 and flagellin resulted in enhanced proliferation and production of IL-2, at levels equivalent to those achieved by costimulation with CD28. In contrast, costimulation with flagellin did not break the hyporesponsiveness of CD4+CD25+ Treg cells, but rather, potently increased their suppressive capacity and enhanced expression of FOXP3. These observations suggest that, in addition to their APC-mediated indirect effects, TLR ligands have the capacity to directly regulate T cell responses and modulate the suppressive activity of Treg cells.


Immunological Reviews | 2008

CD4+ T‐regulatory cells: toward therapy for human diseases

Sarah E. Allan; Raewyn Broady; Silvia Gregori; Megan E. Himmel; Natasha R. Locke; Maria Grazia Roncarolo; Rosa Bacchetta; Megan K. Levings

T‐regulatory cells (Tregs) have a fundamental role in the establishment and maintenance of peripheral tolerance. There is now compelling evidence that deficits in the numbers and/or function of different types of Tregs can lead to autoimmunity, allergy, and graft rejection, whereas an over‐abundance of Tregs can inhibit anti‐tumor and anti‐pathogen immunity. Experimental models in mice have demonstrated that manipulating the numbers and/or function of Tregs can decrease pathology in a wide range of contexts, including transplantation, autoimmunity, and cancer, and it is widely assumed that similar approaches will be possible in humans. Research into how Tregs can be manipulated therapeutically in humans is most advanced for two main types of CD4+ Tregs: forkhead box protein 3 (FOXP3)+ Tregs and interleukin‐10‐producing type 1 Tregs (Tr1 cells). The aim of this review is to highlight current information on the characteristics of human FOXP3+ Tregs and Tr1 cells that make them an attractive therapeutic target. We discuss the progress and limitations that must be overcome to develop methods to enhance Tregs in vivo, expand or induce them in vitro for adoptive transfer, and/or inhibit their function in vivo. Although many technical and theoretical challenges remain, the next decade will see the first clinical trials testing whether Treg‐based therapies are effective in humans.


International Immunology | 2008

STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+CD25-effector T cells

Laura Passerini; Sarah E. Allan; Manuela Battaglia; Sara Di Nunzio; Alicia N. Alstad; Megan K. Levings; Maria Grazia Roncarolo; Rosa Bacchetta

Forkhead box P3 (FOXP3) is considered a specific marker for CD4(+)CD25(+) regulatory T (Treg) cells, but increasing evidence suggests that human CD4(+)CD25(-) effector T (Teff) cells can transiently express FOXP3 upon activation. We demonstrate that the signal transducer and activator of transcription 5 (STAT5)-signaling cytokines, IL-2, IL-15 and to a lesser extent IL-7, induce FOXP3 up-regulation in vitro in activated human Teff cells. In contrast, cytokines which do not activate STAT5, such as IL-4 or transforming growth factor-beta alone, do not directly induce FOXP3 expression in activated Teff cells. Moreover, expression of a constitutively active form of STAT5a is sufficient to induce FOXP3 expression in Teff cells. Expression of FOXP3 in activated Teff cells requires both TCR-mediated activation and endogenous IL-2, but is not dependent on cell division and does not induce suppressive function. The presence of STAT5-activating cytokines is also required to maintain high FOXP3 expression and suppressive activity of Treg cells in vitro. These data indicate that activation of STAT5 sustains FOXP3 expression in both Treg and Teff cells and contribute to our understanding of how cytokines affect the expression of FOXP3.


European Journal of Immunology | 2008

Inducible reprogramming of human T cells into Treg cells by a conditionally active form of FOXP3

Sarah E. Allan; George X. Song-Zhao; Thomas Abraham; Alicia N. McMurchy; Megan K. Levings

FOXP3 is required for the development of Treg and its expression is often used as a surrogate marker of functional suppression. However, it is now known that activated human T effector cells can also express FOXP3 without acquiring regulatory activity. To more closely examine the requirements for FOXP3 to reprogram human T cells into Treg, we developed a conditionally active form of FOXP3 and show here that full acquisition of Treg phenotype and function is strictly dependent on the amount of active FOXP3 a T cell expresses. In addition, the phenotypic and functional alterations induced by FOXP3 are only fully manifested following prolonged induction of protein activity. Induction of FOXP3 activity does not upregulate EBI3 or p35 mRNA, providing evidence that secretion of IL‐35 does not substantially contribute to the suppressive mechanism of human Treg. These data represent the first formal evidence that FOXP3 acts as a quantitative regulator rather than a simple molecular switch for Treg.


Advances in Immunology | 2006

Functional dynamics of naturally occurring regulatory T cells in health and autoimmunity.

Megan K. Levings; Sarah E. Allan; Eva d'Hennezel; Ciriaco A. Piccirillo

A network of regulatory T (Treg) cells exists to downregulate immune responses in various inflammatory circumstances and ultimately assure peripheral T cell tolerance. Naturally occurring CD4(+)CD25(+) Treg cell represents a major lymphocyte population engaged in the dominant control of self-reactive T responses and maintenance of tolerance within this network. CD4(+)CD25(+) Treg cells differentiate in the normal thymus as a functionally distinct subpopulation of T cells bearing a broad T cell receptor repertoire endowing these cells with the capacity to recognize a wide spectrum of self-Ag and non-self-Ag specificities. The development of CD4(+)CD25(+) Treg cells is genetically determined, influenced by Ag-specific and nonspecific signals, costimulation, and cytokines that control their activation, expansion, and suppressive activity. Functional abrogation of these cells in vivo, or genetic defects that affect their development or function, unequivocally predisposes animals and humans to the onset of autoimmune and other inflammatory diseases. Studies have shed light in our understanding of the cellular and molecular basis of CD4(+)CD25(+) Treg cell-mediated immune regulation. In this chapter, we discuss the contribution of naturally occurring CD4(+)CD25(+) Treg cells in the induction of immunologic self-tolerance in animal models and humans and attempt to provide a comprehensive overview of recent findings regarding the phenotype, functional dynamics, and effector mechanism of these cells in autoimmune diseases.


The Journal of Allergy and Clinical Immunology | 2010

Point mutants of forkhead box P3 that cause immune dysregulation, polyendocrinopathy, enteropathy, X-linked have diverse abilities to reprogram T cells into regulatory T cells

Alicia N. McMurchy; Jana Gillies; Sarah E. Allan; Laura Passerini; Eleonora Gambineri; Maria Grazia Roncarolo; Rosa Bacchetta; Megan K. Levings

BACKGROUND Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) is a primary immunodeficiency with autoimmunity caused by mutations in forkhead box P3 (FOXP3), which encodes a transcription factor involved in regulatory T (Treg) cell function. The mechanistic basis for how different mutations in FOXP3 cause distinct manifestations of IPEX remains unclear. OBJECTIVE To determine whether 3 different point mutants of FOXP3 that cause severe or mild IPEX differ in their ability to reprogram conventional T cells into Treg cells. METHODS Human CD4(+) T cells were transduced with wild-type or point mutant forms of FOXP3, and changes in cell surface marker expression, cytokine production, proliferation and suppressive capacity were assessed. Ex vivo T(H)17 cells were also transduced with different forms of FOXP3 to monitor changes in IL-17 production. RESULTS The forkhead mutant F373A failed to upregulate CD25 and CCR4, did not suppress cytokine production, and induced suppressive activity less effectively than wild-type FOXP3. In contrast, although the forkhead mutant R347H was also defective in upregulation of CD25, it suppressed the production of cytokines, conferred suppressive capacity on CD4(+) T cells, and suppressed IL-17 production. F324L, a mutant outside the forkhead domain associated with mild IPEX, was equivalent to wild-type FOXP3 in all aspects tested. CONCLUSION Mutations in FOXP3 that cause IPEX do not uniformly abrogate the ability of FOXP3 to regulate transcription and drive the development of Treg cells. These data support the notion that factors in addition to functional changes in Treg cells, such as alterations in conventional T cells, are involved in the pathogenesis of IPEX.


Wound Repair and Regeneration | 2010

Local expression of indoleamine 2,3-dioxygenase suppresses T-cell-mediated rejection of an engineered bilayer skin substitute

Farshad Forouzandeh; Reza B. Jalili; Ryan Hartwell; Sarah E. Allan; Steven T. Boyce; Dorothy M. Supp; Aziz Ghahary

Engineered skin substitutes (ESSs) comprising both keratinocytes and fibroblasts can afford many advantages over the use of autologous keratinocyte grafts for the treatment of full‐thickness and partial‐thickness burns. In this study, we investigated the efficacy of a novel ESS containing both genetically altered fibroblasts that express the immunosuppressive factor indoleamine 2,3‐dioxygenase (IDO) and primary keratinocytes from a nonautologous source to confer immune protection of xenogeneic cells cultured in a bilayer ESS. The results show that engraftment of IDO expressing skin substitutes on the back of rats significantly improves healing progression over 7 days compared with both nontreated and non‐IDO‐expressing skin substitutes (p<0.001). Immuno‐staining of CD3 and CD31 suggests that IDO‐expressing skin substitutes significantly suppress T cell infiltration (p<0.001) and improve neovascularization by four‐fold (12.6±1.2 vs. 3.0±1.0 vessel‐like structure/high power field), respectively. In conclusion, we found that IDO expression can improve the efficacy of nonautologous ESS for the purpose of wound healing by mitigating T‐cell infiltration as well as promoting vascularization of the graft.


Micron | 2010

Deconvolution and chromatic aberration corrections in quantifying colocalization of a transcription factor in three-dimensional cellular space.

Thomas Abraham; Sarah E. Allan; Megan K. Levings

In the realm of multi-dimensional confocal microscopy, colocalization analysis of fluorescent emission signals has proven to be an invaluable tool for detecting molecular interactions between biological macromolecules at the subcellular level. We show here that image processing operations such as the deconvolution and chromatic corrections play a crucial role in the accurate determination of colocalization between biological macromolecules particularly when the fluorescent signals are faint, and when the fluorescent signals are in the blue and red emission regions. The cellular system presented here describes quantification of an activated forkhead box P3 (FOXP3) transcription factor in three-dimensional (3D) cellular space. 293T cells transfected with a conditionally active form of FOXP3 were stained for anti-FOXP3 conjugated to a fluorescent red dye (Phycoerythrin), and counterstained for DNA (nucleus) with fluorescent blue dye (Hoechst). Due to the broad emission spectra of these dyes, the fluorescent signals were collected only from peak regions and were acquired sequentially. Since the PE signal was weak, a confocal pinhole size of two Airy size was used to collect the 3D image data sets. The raw images supplemented with the spectral data show the preferential association of activated FOXP3 molecules with the nucleus. However, the PE signals were found to be highly diffusive and colocalization quantification from these raw images was not possible. In order to deconvolve the 3D raw image data set, point spread functions (PSFs) of these emissions were measured. From the measured PSF, we found that chromatic shifts between the blue and red colors were quite considerable. Followed by the applications of both the axial and lateral chromatic corrections, colocalization analysis performed on the deconvolved-chromatic corrected-3D image data set showed that 98% of DNA molecules were associated with FOXP3 molecules, whereas only 66% of FOXP3 molecules were colocalized with DNA molecules. In conclusion, our studies clearly demonstrate the importance of PSF measurements, chromatic aberration corrections followed by deconvolution in the accurate determination of transcription factors in the 3D cellular space. The reported imaging and processing methods can be a practical guide for quantitative fluorescence imaging of similar cellular systems and can provide a basis for further development.


Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVI | 2009

Quantifying colocalization of a conditionally active transcription factor FOXP3 in three-dimensional cellular space

Thomas Abraham; Sarah E. Allan; Megan K. Levings

Biological macromolecular interactions between proteins, transcription factors, DNA and other types of biomolecules, are fundamentally important to several cellular and biological processes. 3D Multi-channel confocal microscopy and colocalization analysis of fluorescent signals have proven to be invaluable tools for detecting such molecular interactions. The aim of this work was to quantify colocalization of the FOXP3 transcription factor in 3D cellular space generated from the confocal 3D image sets. 293T cells transfected with a conditionally active form of FOXP3 were stained for nuclei with Hoechst, for FOXP3 with anti-FOXP3 conjugated to PE, and 4-hydroxytamoxifen used as protein translocation and activation agent. Since the protein signal was weak and nonspecific intensity contributions were strong, it was difficult to perform colocalization analysis and estimate colocalization quantities. We performed 3D restoration by deconvolution method on the confocal images using experimentally measured point spread functions (PSFs) and subsequently a color shift correction. The deconvolution method eliminated nonspecific intensity contributions originating from PSF imposed by optical microscopy diffraction resolution limits and noise since these factors significantly affected colocalization analysis and quantification. Visual inspection of the deconvolved 3D image suggested that the FOXP3 molecules are predominantly colocalized within the nuclei although the fluorescent signals from FOXP3 molecules were also present in the cytoplasm. A close inspection of the scatter plot (colocalization map) and correlation quantities such as the Pearsons and colocalization coefficients showed that the fluorescent signals from the FOXP3 molecules and DNA are strongly correlated. In conclusion, our colocalization quantification approach confirms the preferential association of the FOXP3 molecules with the DNA despite the presence of fluorescent signals from the former one both in the nuclei and cytoplasm.

Collaboration


Dive into the Sarah E. Allan's collaboration.

Top Co-Authors

Avatar

Megan K. Levings

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Passerini

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natasha K. Crellin

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia N. Alstad

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Steven F. Ziegler

Benaroya Research Institute

View shared research outputs
Top Co-Authors

Avatar

Thomas Abraham

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Luigi Naldini

Vita-Salute San Raffaele University

View shared research outputs
Researchain Logo
Decentralizing Knowledge