Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah E. Cisewski is active.

Publication


Featured researches published by Sarah E. Cisewski.


Osteoarthritis and Cartilage | 2011

Regional cell density distribution and oxygen consumption rates in porcine TMJ discs: an explant study

Jonathan T. W. Kuo; Changcheng Shi; Sarah E. Cisewski; Lixia Zhang; Michael J. Kern; Hai Yao

OBJECTIVE To determine the regional cell density distribution and basal oxygen consumption rates (based on tissue volume and cell number) of temporomandibular joint (TMJ) discs and further examine the impact of oxygen tension on these rates. DESIGN TMJ discs from pigs aged 6-8 months were divided into five regions: anterior, intermediate, posterior, lateral and medial. The cell density was determined using confocal laser scanning microscopy. The change in oxygen tension was recorded while TMJ disc explants were cultured in sealed metabolism chambers. The volume based oxygen consumption rate of explants was determined by theoretical curve-fitting of the recorded oxygen tension data with the Michaelis-Menten equation. The rate on a per-cell basis was calculated based on the cell density measurements and volume based rate measured in another group of discs. RESULTS The overall cell density [mean, 95% confidence interval (CI)] was 51.3 (21.3-81.3) × 10(6) cells/mL wet tissue. Along the anteroposterior axis, the anterior band had 25.5% higher cell density than the intermediate zone (P<0.02) and 29.1% higher than the posterior band (P<0.008). Along the mediolateral axes, the medial region had 26.2% higher cell density than the intermediate zone (P<0.04) and 25.4% higher than the lateral region (P<0.045). The overall volume and cell based maximum oxygen consumption rates were 1.44 (0.44-2.44) μmol/mL wet tissue/h and 28.7 (12.2-45.2)nmol/10(6)cells/h, respectively. The central regions (intermediate, lateral, and medial) had significantly higher volume based (P<0.02) and cell based (P<0.005) oxygen consumption rates than the anterior and posterior bands. At high oxygen tension, the oxygen consumption rate remained constant, but dropped as oxygen tension fell below 5%. CONCLUSIONS The TMJ disc had higher cell density and oxygen consumption rates than articular cartilage reported in the literature. These results suggest that a steeper oxygen gradient may exist in the TMJ disc and may be vulnerable to pathological events that impede nutrient supply.


Journal of Biomechanics | 2016

Region and strain-dependent diffusivities of glucose and lactate in healthy human cartilage endplate.

Yongren Wu; Sarah E. Cisewski; Nicholas Wegner; Shichang Zhao; Vincent D. Pellegrini; Elizabeth H. Slate; Hai Yao

The cartilage endplate (CEP) is implicated as the main pathway of nutrient supply to the healthy human intervertebral disc (IVD). In this study, the diffusivities of nutrient/metabolite solutes in healthy CEP were assessed, and further correlated with tissue biochemical composition and structure. The CEPs from non-degenerated human IVD were divided into four regions: central, lateral, anterior, and posterior. The diffusivities of glucose and lactate were measured with a custom diffusion cell apparatus under 0%, 10%, and 20% compressive strains. Biochemical assays were conducted to quantify the water and glycosaminoglycan (GAG) contents. The Safranin-O and Ehrlich׳s hematoxylin and eosin staining and scanning electron microscopy (SEM) were performed to reveal the tissue structure of the CEP. Average diffusivities of glucose and lactate in healthy CEP were 2.68±0.93×10-7cm2/s and 4.52±1.47×10-7cm2/s, respectively. Solute diffusivities were region-dependent (p<0.0001) with the highest values in the central region, and mechanical strains impeded solute diffusion in the CEP (p<0.0001). The solute diffusivities were significantly correlated with the tissue porosities (glucose: p<0.0001, r=0.581; lactate: p<0.0001, r=0.534). Histological and SEM studies further revealed that the collagen fibers in healthy CEP are more compacted than those in the nucleus pulposus (NP) and annulus fibrosus (AF) and show no clear orientation. Compared to human AF and NP, much smaller solute diffusivities in human CEP suggested that it acts as a gateway for solute diffusion through the disc, maintaining the balance of nutritional environment in healthy human disc under mechanical loading and preventing the progression of disc degeneration.


Osteoarthritis and Cartilage | 2015

The effects of oxygen level and glucose concentration on the metabolism of porcine TMJ disc cells

Sarah E. Cisewski; Lixia Zhang; Jonathan T. W. Kuo; Gregory J. Wright; Yongren Wu; Michael J. Kern; Hai Yao

OBJECTIVE To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. DESIGN TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 h with 0, 1.5, 5, or 25 mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-(3)H] proline and [(35)S] sulfate into the cells, respectively. RESULTS TMJ disc cell viability significantly decreased (P < 0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P < 0.0001), while a decrease in glucose concentration significantly decreased viability (P < 0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P < 0.0001) and matrix synthesis (P < 0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P < 0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P < 0.0001), ATP production (P = 0.00015), and collagen (P = 0.0002) and proteoglycan synthesis (P < 0.0001). CONCLUSIONS Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply.


Orthodontics & Craniofacial Research | 2017

Fluid pressurization and tractional forces during TMJ disc loading: A biphasic finite element analysis

Yongren Wu; Sarah E. Cisewski; Feng Wei; Xin She; Theresa S. Gonzales; Laura R. Iwasaki; Jeffrey C. Nickel; Hai Yao

OBJECTIVES To investigate the ploughing mechanism associated with tractional force formation on the temporomandibular joint (TMJ) disc surface. SETTING AND SAMPLE POPULATION Ten left TMJ discs were harvested from 6- to 8-month-old male Yorkshire pigs. MATERIALS AND METHODS Confined compression tests characterized mechanical TMJ disc properties, which were incorporated into a biphasic finite element model (FEM). The FEM was established to investigate load carriage within the extracellular matrix (ECM) and the ploughing mechanism during tractional force formation by simulating previous in vitro plough experiments. RESULTS Biphasic mechanical properties were determined in five TMJ disc regions (average±standard deviation for aggregate modulus: 0.077±0.040 MPa; hydraulic permeability: 0.88±0.37×10-3 mm4 /Ns). FE simulation results demonstrated that interstitial fluid pressurization is a dominant loading support mechanism in the TMJ disc. Increased contact load and duration led to increased solid ECM strain and stress within, and increased ploughing force on the surface of the disc. CONCLUSION Sustained mechanical loading may play a role in load carriage within the ECM and ploughing force formation during stress-field translation at the condyle-disc interface. This study further elucidated the mechanism of ploughing on tractional force formation and provided a baseline for future analysis of TMJ mechanics, cartilage fatigue and early TMJ degeneration.


Journal of Biomechanics | 2015

The region-dependent biomechanical and biochemical properties of bovine cartilaginous endplate.

Yongren Wu; Sarah E. Cisewski; Barton L. Sachs; Vincent D. Pellegrini; Michael J. Kern; Elizabeth H. Slate; Hai Yao

Regional biomechanical and biochemical properties of bovine cartilaginous endplate (CEP) and its role in disc mechanics and nutrition were determined. The equilibrium aggregate modulus and hydraulic permeability between the central and lateral regions were examined by confined compression testing. Biochemical assays were conducted to quantify the amount of water, collagen, and glycosaminoglycan (GAG). The equilibrium aggregate modulus of the CEP in the central region (0.23 ± 0.15 MPa) was significantly lower than for the lateral region (0.83 ± 0. 26 MPa). No significant regional difference was found for the permeability of the CEP (central region: 0.13 ± 0.07×10(-15)m(4)/Ns and lateral region: 0.09 ± 0.03 × 10(-15)m(4)/Ns). CEPs were an average of 75.6% water by wet weight, 41.1% collagen, and 20.4% GAG by dry weight in the central region, as well as an average of 70.2% water by wet weight, 73.8% collagen, and 11.7% GAG by dry weight in the lateral region. Regional differences observed for the equilibrium aggregate modulus were likely due to the regional variation in biochemical composition. The lateral bovine endplate is much stiffer and may share a greater portion of the load. Compared with the nucleus pulposus (NP) and annulus fibrosus (AF), a smaller hydraulic permeability was found for the CEP in both the central and lateral regions, which could be due to its lower water content and higher collagen content. Our results suggest that the CEP may block rapid fluid exchange and solute convection, allow pressurization of the interstitial fluid, and play a significant role in nutrient supply in response to loading.


Annals of Biomedical Engineering | 2014

Measurement of Three-Dimensional Anisotropic Diffusion by Multiphoton Fluorescence Recovery after Photobleaching

Changcheng Shi; Sarah E. Cisewski; P. Darwin Bell; Hai Yao

The multiphoton fluorescence recovery after photobleaching (MP-FRAP) technique has been developed to measure the three-dimensional (3D) solute diffusion within biological systems. However, current 3D MP-FRAP models are based on isotropic diffusion and spatial domain analysis. The 3D anisotropic diffusion and frequency domain analysis for MP-FRAP measurements are rarely studied. In this study, a new technique is demonstrated for the quantitative and non-destructive determination of 3D anisotropic solute diffusion tensors within biological fibrosis tissues by multiphoton photobleaching and spatial Fourier analysis (SFA). Compared to the spatial domain analysis based MP-FRAP techniques, this SFA-based method has the capability for determining the 3D anisotropic diffusion tensors as well as the flexibility for satisfying initial and boundary conditions. First, a close-form solution of the 3D anisotropic diffusion equation is derived by solely using SFA. Next, this new method is validated by computer-simulated MP-FRAP experiments with pre-defined 3D anisotropic diffusion tensors as well as experimental diffusion measurements of FITC-Dextran (FD) molecules in aqueous glycerol solutions. Finally, this MP-FRAP technique is applied to the measurement of 3D anisotropic diffusion tensors of FD molecules within porcine tendon tissues. This study provides a new tool for complete determination of 3D anisotropic solute diffusion tensor in biological tissues.


Spine | 2018

Comparison of Oxygen Consumption Rates of Nondegenerate and Degenerate Human Intervertebral Disc Cells

Sarah E. Cisewski; Yongren Wu; Brooke J. Damon; Barton L. Sachs; Michael J. Kern; Hai Yao

Study Design. In vitro measurements of the oxygen consumption rates (OCR) of human intervertebral disc (IVD) cells. Objective. The aim of this study was to determine the differences in the OCR of nondegenerate and degenerate human annulus fibrosus (AF), nucleus pulposus (NP), and cartilage endplate (CEP) cells at different glucose concentrations. Summary of Background Data. The avascular nature of the IVD creates a delicate balance between rate of nutrient transport through the matrix and rate of disc cell consumption necessary to maintain tissue health. Previous studies have shown a dependence of OCR for animal (e.g., bovine and porcine) IVD cells on oxygen level and glucose concentration. However, the OCR of nondegenerate human IVD cells compared to degenerate human IVD cells at different glucose concentrations has not been investigated. Methods. IVD cells were isolated from the AF, NP, and CEP regions of human cadaver spines and surgical samples. The changes in oxygen concentration were recorded when cells were sealed in a metabolic chamber. The OCR of cells was determined by curve fitting using the Michaelis-Menton equation. Results. Under identical cell culture conditions, the OCR of degenerate human IVD cells was three to five times greater than that of nondegenerate human IVD cells. The degenerate IVD cells cultured in low-glucose medium (1 mmol/L) exhibited the highest OCR compared to degenerate cells cultured at higher glucose levels (i.e., 5 mmol/L, 25 mmol/L), whereas no significant differences in OCR were found among the nondegenerate IVD cells for all glucose levels. Conclusion. Considering the significantly higher OCR and unique response to glucose of degenerate human IVD cells, the degeneration of the IVD is associated with a cell phenotypic change related to OCR. The OCR of IVD cells reported in this study will be valuable for understanding human IVD cellular behavior and tissue nutrition in response to disc degeneration. Level of Evidence: N/A


Molecular & cellular biomechanics : MCB | 2013

Effect of cartilage endplate on cell based disc regeneration: a finite element analysis.

Yongren Wu; Sarah E. Cisewski; Barton L. Sachs; Hai Yao


Orthodontics & Craniofacial Research | 2015

Viscoelastic shear properties of porcine temporomandibular joint disc

Yongren Wu; Jonathan T. W. Kuo; Gregory J. Wright; Sarah E. Cisewski; Feng Wei; Michael J. Kern; Hai Yao


Spine | 2017

Quantifying Baseline Fixed Charge Density in Healthy Human Cartilage Endplate: A Two-point Electrical Conductivity Method

Yongren Wu; Sarah E. Cisewski; Yi Sun; Brooke J. Damon; Barton L. Sachs; Vincent D. Pellegrini; Elizabeth H. Slate; Hai Yao

Collaboration


Dive into the Sarah E. Cisewski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Kern

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Barton L. Sachs

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan T. W. Kuo

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Vincent D. Pellegrini

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge