Sarah E. F. D'Orazio
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah E. F. D'Orazio.
PLOS Pathogens | 2014
Li-Hong Chen; Volkan K. Köseoğlu; Zehra T. Güvener; Tanya Myers-Morales; Joseph M. Reed; Sarah E. F. D'Orazio; Kurt W. Miller; Mark Gomelsky
We characterized key components and major targets of the c-di-GMP signaling pathways in the foodborne pathogen Listeria monocytogenes, identified a new c-di-GMP-inducible exopolysaccharide responsible for motility inhibition, cell aggregation, and enhanced tolerance to disinfectants and desiccation, and provided first insights into the role of c-di-GMP signaling in listerial virulence. Genome-wide genetic and biochemical analyses of c-di-GMP signaling pathways revealed that L. monocytogenes has three GGDEF domain proteins, DgcA (Lmo1911), DgcB (Lmo1912) and DgcC (Lmo2174), that possess diguanylate cyclase activity, and three EAL domain proteins, PdeB (Lmo0131), PdeC (Lmo1914) and PdeD (Lmo0111), that possess c-di-GMP phosphodiesterase activity. Deletion of all phosphodiesterase genes (ΔpdeB/C/D) or expression of a heterologous diguanylate cyclase stimulated production of a previously unknown exopolysaccharide. The synthesis of this exopolysaccharide was attributed to the pssA-E (lmo0527-0531) gene cluster. The last gene of the cluster encodes the fourth listerial GGDEF domain protein, PssE, that functions as an I-site c-di-GMP receptor essential for exopolysaccharide synthesis. The c-di-GMP-inducible exopolysaccharide causes cell aggregation in minimal medium and impairs bacterial migration in semi-solid agar, however, it does not promote biofilm formation on abiotic surfaces. The exopolysaccharide also greatly enhances bacterial tolerance to commonly used disinfectants as well as desiccation, which may contribute to survival of L. monocytogenes on contaminated food products and in food-processing facilities. The exopolysaccharide and another, as yet unknown c-di-GMP-dependent target, drastically decrease listerial invasiveness in enterocytes in vitro, and lower pathogen load in the liver and gallbladder of mice infected via an oral route, which suggests that elevated c-di-GMP levels play an overall negative role in listerial virulence.
PLOS Pathogens | 2012
Elsa N. Bou Ghanem; Grant S. Jones; Tanya Myers-Morales; Pooja D. Patil; Achmad N. Hidayatullah; Sarah E. F. D'Orazio
Intestinal Listeria monocytogenes infection is not efficient in mice and this has been attributed to a low affinity interaction between the bacterial surface protein InlA and E-cadherin on murine intestinal epithelial cells. Previous studies using either transgenic mice expressing human E-cadherin or mouse-adapted L. monocytogenes expressing a modified InlA protein (InlAm) with high affinity for murine E-cadherin showed increased efficiency of intragastric infection. However, the large inocula used in these studies disseminated to the spleen and liver rapidly, resulting in a lethal systemic infection that made it difficult to define the natural course of intestinal infection. We describe here a novel mouse model of oral listeriosis that closely mimics all phases of human disease: (1) ingestion of contaminated food, (2) a distinct period of time during which L. monocytogenes colonize only the intestines, (3) varying degrees of systemic spread in susceptible vs. resistant mice, and (4) late stage spread to the brain. Using this natural feeding model, we showed that the type of food, the time of day when feeding occurred, and mouse gender each affected susceptibility to L. monocytogenes infection. Co-infection studies using L. monocytogenes strains that expressed either a high affinity ligand for E-cadherin (InlAm), a low affinity ligand (wild type InlA from Lm EGDe), or no InlA (ΔinlA) showed that InlA was not required to establish intestinal infection in mice. However, expression of InlAm significantly increased bacterial persistence in the underlying lamina propria and greatly enhanced dissemination to the mesenteric lymph nodes. Thus, these studies revealed a previously uncharacterized role for InlA in facilitating systemic spread via the lymphatic system after invasion of the gut mucosa.
Journal of Immunology | 2006
Sarah E. F. D'Orazio; Matthew J. Troese; Michael N. Starnbach
IFN-γ is critical for innate immunity against Listeria monocytogenes (L. monocytogenes), and it has long been thought that NK cells are the major source of IFN-γ during the first few days of infection. However, it was recently shown that a significant number of CD44highCD8+ T cells also secrete IFN-γ in an Ag-independent fashion within 16 h of infection with L. monocytogenes. In this report, we showed that infection with other intracellular pathogens did not trigger this early IFN-γ response and that cytosolic localization of Listeria was required to induce rapid IFN-γ production by CD44highCD8+ T cells. Infection of C57BL/6 mice with an Escherichia coli strain expressing listeriolysin O (LLO), a pore-forming toxin from L. monocytogenes, also resulted in rapid IFN-γ expression by CD8+ T cells. These results suggest that LLO expression is essential for induction of the early IFN-γ response, although it is not yet clear whether LLO plays a direct role in triggering a signal cascade that leads to cytokine production or whether it is required simply to release other bacterial product(s) into the host cell cytosol. Interestingly, mouse strains that displayed a rapid CD8+ T cell IFN-γ response (C57BL/6, 129, and NZB) all had lower bacterial burdens in the liver 3 days postinfection compared with mouse strains that did not have an early CD8+ T cell IFN-γ response (BALB/c, A/J, and SJL). These data suggest that participation of memory CD8+ T cells in the early immune response against L. monocytogenes correlates with innate host resistance to infection.
Infection and Immunity | 2011
Patience Murapa; Martin Ward; Siva K. Gandhapudi; Jerold G. Woodward; Sarah E. F. D'Orazio
ABSTRACT Heat shock factor 1 (HSF1) is a stress-induced transcription factor that promotes expression of genes that protect mammalian cells from the lethal effects of severely elevated temperatures (>42°C). However, we recently showed that HSF1 is activated at a lower temperature (39.5°C) in T cells, suggesting that HSF1 may be important for preserving T cell function during pathogen-induced fever responses. To test this, we examined the role of HSF1 in clearance of Listeria monocytogenes, an intracellular bacterial pathogen that elicits a strong CD8+ T cell response in mice. Using temperature transponder microchips, we showed that the core body temperature increased approximately 2°C in L. monocytogenes-infected mice and that the fever response was maintained for at least 24 h. HSF1-deficient mice cleared a low-dose infection with slightly slower kinetics than did HSF1 +/+ littermate controls but were significantly more susceptible to challenges with higher doses of bacteria. Surprisingly, HSF1-deficient mice did not show a defect in CD8+ T cell responses following sublethal infection. However, when HSF1-deficient mice were challenged with high doses of L. monocytogenes, increased levels of serum tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) compared to those of littermate control mice were observed, and rapid death of the animals occurred within 48 to 60 h of infection. Neutralization of TNF-α enhanced the survival of HSF1-deficient mice. These results suggest that HSF1 is needed to prevent the overproduction of proinflammatory cytokines and subsequent death due to septic shock that can result following high-dose challenge with bacterial pathogens.
Frontiers in Cellular and Infection Microbiology | 2014
Sarah E. F. D'Orazio
Listeria monocytogenes has been recognized as a food borne pathogen in humans since the 1980s, but we still understand very little about oral transmission of L. monocytogenes or the host factors that determine susceptibility to gastrointestinal infection, due to the lack of an appropriate small animal model of oral listeriosis. Early feeding trials suggested that many animals were highly resistant to oral infection, and the more reproducible intravenous or intraperitoneal routes of inoculation soon came to be favored. There are a fair number of previously published studies using an oral infection route, but the work varies widely in terms of bacterial strain choice, the methods used for oral transmission, and various manipulations used to enhance infectivity. This mini review summarizes the published literature using oral routes of L. monocytogenes infection and highlights recent technological advances that make oral infection a more attractive model system.
Journal of Immunology | 2011
Elsa N. Bou Ghanem; Christina Nelson; Sarah E. F. D'Orazio
A subset of CD44hiCD8+ T cells isolated from C57BL/6/J (B6) mice, but not BALB/c/By/J (BALB/c) mice, rapidly secrete IFN-γ within 16 h of infection with Listeria monocytogenes. This Ag-independent response requires the presence of both IL-12 and IL-18. Previous studies showed that dendritic cells from B6 mice produced more Th1-type cytokines such as IL-12 than did those from BALB/c mice in response to L. monocytogenes infection. In this report, we demonstrate that the microenvironment in L. monocytogenes-infected BALB/c mice is sufficient to induce responsive B6 CD8+ T cells to rapidly secrete IFN-γ. Furthermore, BALB/c CD8+ T cells did not rapidly secrete IFN-γ even when they were exposed to high concentrations of IL-12 plus IL-18 in vitro. In the presence of IL-12 and IL-18, B6 CD44hiCD8+ T cells upregulated expression of the receptor subunits for these cytokines more rapidly than did BALB/c T cells. In comparing particular subsets of memory phenotype CD8+ T cells, we found that virtual memory cells, rather than true Ag-experienced cells, had the greatest level of impairment in BALB/c mice. These data suggest that the degree of cytokine-driven bystander activation of CD8+ T cells that occurs during infection depends on both APCs and T cell-intrinsic properties that can vary among mouse strains.
Microbial Pathogenesis | 2009
Denise S. McElroy; Taylor J. Ashley; Sarah E. F. D'Orazio
It is widely reported that Listeria monocytogenes can infect virtually all cell types, however, the degree to which this facultative intracellular pathogen can infect lymphocytes has not been well characterized. Previous studies have shown that a subset of lymphocytes, including activated T cells, are susceptible to apoptosis following exposure to L. monocytogenes, but the ability of the bacteria to replicate in the cytosol of lymphocytes prior to cell death was not examined. In this report, we demonstrate that intracellular L. monocytogenes can survive and multiply in vitro in a variety of transformed cell lines of lymphocytic origin. Intracellular L. monocytogenes were also recovered from splenic B cells, T cells, and NK cells following intravenous infection of mice. In fact, lymphocyte-associated L. monocytogenes comprised a substantial portion of the total bacterial burden in the spleen throughout the course of murine infection and B cell-deficient mice had significantly lower titers of bacteria present in the spleen following intravenous infection. These results suggest that lymphocytes can be a reservoir for L. monocytogenes growth in vivo.
Infection and Immunity | 2015
Grant S. Jones; Kate M. Bussell; Tanya Myers-Morales; Abigail M. Fieldhouse; Elsa N. Bou Ghanem; Sarah E. F. D'Orazio
ABSTRACT Listeria monocytogenes is a highly adaptive bacterium that replicates as a free-living saprophyte in the environment as well as a facultative intracellular pathogen that causes invasive foodborne infections. The intracellular life cycle of L. monocytogenes is considered to be its primary virulence determinant during mammalian infection; however, the proportion of L. monocytogenes that is intracellular in vivo has not been studied extensively. In this report, we demonstrate that the majority of wild-type (strain EGDe) and mouse-adapted (InlAm-expressing) L. monocytogenes recovered from the mesenteric lymph nodes (MLN) was extracellular within the first few days after foodborne infection. In addition, significantly lower burdens of L. monocytogenes were recovered from the colon, spleen, and liver of gentamicin-treated mice than of control mice. This led us to investigate whether intracellular replication of L. monocytogenes was essential during the intestinal phase of infection. We found that lipoate protein ligase-deficient L. monocytogenes (ΔlplA1) mutants, which display impaired intracellular growth, were able to colonize the colon but did not persist efficiently and had a significant defect in spreading to the MLN, spleen, and liver. Together, these data indicate that the majority of the L. monocytogenes burden in the gastrointestinal tract is extracellular, but the small proportion of intracellular L. monocytogenes is essential for dissemination to the MLN and systemic organs.
Journal of Visualized Experiments | 2013
Elsa N. Bou Ghanem; Tanya Myers-Morales; Grant S. Jones; Sarah E. F. D'Orazio
L. monocytogenes are facultative intracellular bacterial pathogens that cause food borne infections in humans. Very little is known about the gastrointestinal phase of listeriosis due to the lack of a small animal model that closely mimics human disease. This paper describes a novel mouse model for oral transmission of L. monocytogenes. Using this model, mice fed L. monocytogenes-contaminated bread have a discrete phase of gastrointestinal infection, followed by varying degrees of systemic spread in susceptible (BALB/c/By/J) or resistant (C57BL/6) mouse strains. During the later stages of the infection, dissemination to the gall bladder and brain is observed. The food borne model of listeriosis is highly reproducible, does not require specialized skills, and can be used with a wide variety of bacterial isolates and laboratory mouse strains. As such, it is the ideal model to study both virulence strategies used by L. monocytogenes to promote intestinal colonization, as well as the host response to invasive food borne bacterial infection.
Journal of Immunology | 2016
Pitts Mg; Myers-Morales T; Sarah E. F. D'Orazio
Type I IFN (IFN-α/β) is thought to enhance growth of the foodborne intracellular pathogen Listeria monocytogenes by promoting mechanisms that dampen innate immunity to infection. However, the type I IFN response has been studied primarily using methods that bypass the stomach and, therefore, fail to replicate the natural course of L. monocytogenes infection. In this study, we compared i.v. and foodborne transmission of L. monocytogenes in mice lacking the common type I IFN receptor (IFNAR1−/−). Contrary to what was observed using i.v. infection, IFNAR1−/− and wild-type mice had similar bacterial burdens in the liver and spleen following foodborne infection. Splenocytes from wild-type mice infected i.v. produced significantly more IFN-β than did those infected by the foodborne route. Consequently, the immunosuppressive effects of type I IFN signaling, which included T cell death, increased IL-10 secretion, and repression of neutrophil recruitment to the spleen, were all observed following i.v. but not foodborne transmission of L. monocytogenes. Type I IFN was also previously shown to cause a loss of responsiveness to IFN-γ through downregulation of the IFN-γ receptor α-chain on macrophages and dendritic cells. However, we detected a decrease in surface expression of IFN-γ receptor α-chain even in the absence of IFN-α/β signaling, suggesting that in vivo, this infection-induced phenotype is not type I IFN–dependent. These results highlight the importance of using the natural route of infection for studies of host–pathogen interactions and suggest that the detrimental effects of IFN-α/β signaling on the innate immune response to L. monocytogenes may be an artifact of the i.v. infection model.