Sarah E. Hobdey
National Renewable Energy Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah E. Hobdey.
Journal of Biological Chemistry | 2014
Deanne W. Sammond; John M. Yarbrough; Elisabeth Mansfield; Yannick J. Bomble; Sarah E. Hobdey; Stephen R. Decker; Larry E. Taylor; Michael G. Resch; Joseph J. Bozell; Michael E. Himmel; Todd B. Vinzant; Michael F. Crowley
Background: Lignin is a plant cell wall polymer that inhibits enzymatic saccharification of polysaccharides for the production of biofuel. Results: The adsorption of enzymes to lignin surfaces correlates to solvent-exposed hydrophobic clusters. Conclusion: Hydrophobicity, not surface charge, identifies proteins that preferentially adsorb to lignin. Significance: The method could be used to design improved cellulase cocktails to lower the cost of biofuel production. The inhibitory action of lignin on cellulase cocktails is a major challenge to the biological saccharification of plant cell wall polysaccharides. Although the mechanism remains unclear, hydrophobic interactions between enzymes and lignin are hypothesized to drive adsorption. Here we evaluate the role of hydrophobic interactions in enzyme-lignin binding. The hydrophobicity of the enzyme surface was quantified using an estimation of the clustering of nonpolar atoms, identifying potential interaction sites. The adsorption of enzymes to lignin surfaces, measured using the quartz crystal microbalance, correlates to the hydrophobic cluster scores. Further, these results suggest a minimum hydrophobic cluster size for a protein to preferentially adsorb to lignin. The impact of electrostatic contribution was ruled out by comparing the isoelectric point (pI) values to the adsorption of proteins to lignin surfaces. These results demonstrate the ability to predict enzyme-lignin adsorption and could potentially be used to design improved cellulase cocktails, thus lowering the overall cost of biofuel production.
Journal of Biological Chemistry | 2009
Steven J. McBryant; Joshua M.KlonoskiJ.M. Klonoski; Troy C. Sorensen; Sarah S. Norskog; Sere Williams; Michael G. Resch; James A. Toombs; Sarah E. Hobdey; Jeffrey C. Hansen
Mg2+-dependent oligomerization of nucleosomal arrays is correlated with higher order folding transitions that stabilize chromosome structure beyond the 30-nm diameter fiber. In the present studies, we have employed a novel mutagenesis-based approach to identify the macromolecular determinants that control H4 N-terminal domain (NTD) function during oligomerization. Core histones were engineered in which 1) the H2A, H2B, and H3 NTDs were swapped onto the H4 histone fold; 2) the length of the H4 NTD and the H2A NTD on the H4 histone fold, were increased; 3) the charge density of the NTDs on the H4 histone fold was increased or decreased; and 4) the H4 NTD was placed on the H2B histone fold. Model nucleosomal arrays were assembled from wild type and mutant core histone octamers, and Mg2+-dependent oligomerization was characterized. The results demonstrated that the H2B and H3 NTDs could replace the H4 NTD, as could the H2A NTD if it was duplicated to the length of the native H4 NTD. Arrays oligomerized at lower salt concentrations as the length of the NTD on the H4 histone fold was increased. Mutations that decreased the NTD charge density required more Mg2+ to oligomerize, whereas mutants that increased the charge density required less salt. Finally, the H4 NTD functioned differently when attached to the H2B histone fold than the H4 histone fold. These studies have revealed new insights into the biochemical basis for H4 NTD effects on genome architecture as well as the protein chemistry that underlies the function of the intrinsically disordered H4 NTD.
Metabolic Engineering Communications | 2016
Jeffrey G. Linger; Sarah E. Hobdey; Mary Ann Franden; Emily M. Fulk; Gregg T. Beckham
Pyrolysis offers a straightforward approach for the deconstruction of plant cell wall polymers into bio-oil. Recently, there has been substantial interest in bio-oil fractionation and subsequent use of biological approaches to selectively upgrade some of the resulting fractions. A fraction of particular interest for biological upgrading consists of polysaccharide-derived substrates including sugars and sugar dehydration products such as levoglucosan and cellobiosan, which are two of the most abundant pyrolysis products of cellulose. Levoglucosan can be converted to glucose-6-phosphate through the use of a levoglucosan kinase (LGK), but to date, the mechanism for cellobiosan utilization has not been demonstrated. Here, we engineer the microbe Pseudomonas putida KT2440 to use levoglucosan as a sole carbon and energy source through LGK integration. Moreover, we demonstrate that cellobiosan can be enzymatically converted to levoglucosan and glucose with β-glucosidase enzymes from both Glycoside Hydrolase Family 1 and Family 3. β-glucosidases are commonly used in both natural and industrial cellulase cocktails to convert cellobiose to glucose to relieve cellulase product inhibition and to facilitate microbial uptake of glucose. Using an exogenous β-glucosidase, we demonstrate that the engineered strain of P. putida can grow on levoglucosan up to 60 g/L and can also utilize cellobiosan. Overall, this study elucidates the biological pathway to co-utilize levoglucosan and cellobiosan, which will be a key transformation for the biological upgrading of pyrolysis-derived substrates.
Biotechnology for Biofuels | 2015
Jeffrey G. Linger; Larry E. Taylor; John O. Baker; Todd Vander Wall; Sarah E. Hobdey; Kara Podkaminer; Michael E. Himmel; Stephen R. Decker
BackgroundOne of the primary industrial-scale cellulase producers is the ascomycete fungus, Hypocrea jecorina, which produces and secretes large quantities of diverse cellulolytic enzymes. Perhaps the single most important biomass degrading enzyme is cellobiohydrolase I (cbh1or Cel7A) due to its enzymatic proficiency in cellulose depolymerization. However, production of Cel7A with native-like properties from heterologous expression systems has proven difficult. In this study, we develop a protein expression system in H. jecorina (Trichoderma reesei) useful for production and secretion of heterologous cellobiohydrolases from glycosyl hydrolase family 7. Building upon previous work in heterologous protein expression in filamentous fungi, we have integrated a native constitutive enolase promoter with the native cbh1 signal sequence.ResultsThe constitutive eno promoter driving the expression of Cel7A allows growth on glucose and results in repression of the native cellulase system, severely reducing background endo- and other cellulase activity and greatly simplifying purification of the recombinant protein. Coupling this system to a Δcbh1 strain of H. jecorina ensures that only the recombinant Cel7A protein is produced. Two distinct transformant colony morphologies were observed and correlated with high and null protein production. Production levels in ‘fast’ transformants are roughly equivalent to those in the native QM6a strain of H. jecorina, typically in the range of 10 to 30 mg/L when grown in continuous stirred-tank fermenters. ‘Slow’ transformants showed no evidence of Cel7A production. Specific activity of the purified recombinant Cel7A protein is equivalent to that of native protein when assayed on pretreated corn stover, as is the thermal stability and glycosylation level. Purified Cel7A produced from growth on glucose demonstrated remarkably consistent specific activity. Purified Cel7A from the same strain grown on lactose demonstrated significantly higher variability in activity.ConclusionsThe elimination of background cellulase induction provides much more consistent measured specific activity compared to a traditional cbh1 promoter system induced with lactose. This expression system provides a powerful tool for the expression and comparison of mutant and/or phylogenetically diverse cellobiohydrolases in the industrially relevant cellulase production host H. jecorina.
Nature Communications | 2018
Larry E. Taylor; Brandon C. Knott; John O. Baker; P. Markus Alahuhta; Sarah E. Hobdey; Jeffrey G. Linger; Vladimir V. Lunin; Antonella Amore; Venkataramanan Subramanian; Kara Podkaminer; Qi Xu; Todd A. VanderWall; Logan A. Schuster; Yogesh B. Chaudhari; William S. Adney; Michael F. Crowley; Michael E. Himmel; Stephen R. Decker; Gregg T. Beckham
Glycoside Hydrolase Family 7 cellobiohydrolases (GH7 CBHs) catalyze cellulose depolymerization in cellulolytic eukaryotes, making them key discovery and engineering targets. However, there remains a lack of robust structure–activity relationships for these industrially important cellulases. Here, we compare CBHs from Trichoderma reesei (TrCel7A) and Penicillium funiculosum (PfCel7A), which exhibit a multi-modular architecture consisting of catalytic domain (CD), carbohydrate-binding module, and linker. We show that PfCel7A exhibits 60% greater performance on biomass than TrCel7A. To understand the contribution of each domain to this improvement, we measure enzymatic activity for a library of CBH chimeras with swapped subdomains, demonstrating that the enhancement is mainly caused by PfCel7A CD. We solve the crystal structure of PfCel7A CD and use this information to create a second library of TrCel7A CD mutants, identifying a TrCel7A double mutant with near-equivalent activity to wild-type PfCel7A. Overall, these results reveal CBH regions that enable targeted activity improvements.Cellobiohydrolases (CBHs) are critical for natural and industrial biomass degradation but their structure–activity relationships are not fully understood. Here, the authors present the biochemical and structural characterization of two CBHs, identifying protein regions that confer enhanced CBH activity.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Antonella Amore; Brandon C. Knott; Nitin T. Supekar; Asif Shajahan; Parastoo Azadi; Peng Zhao; Lance Wells; Jeffrey G. Linger; Sarah E. Hobdey; Todd Vander Wall; Todd Shollenberger; John M. Yarbrough; Zhongping Tan; Michael F. Crowley; Michael E. Himmel; Stephen R. Decker; Gregg T. Beckham; Larry E. Taylor
Significance Glycosylation is a ubiquitous posttranslational modification of proteins wherein carbohydrates are appended to protein side chains, with myriad functions in molecular and cell biology. The enzymes that break down polysaccharides and other recalcitrant polymers in nature are often decorated with two canonical forms of glycosylation, N- and O-linked glycans, the roles of which are only partially understood in these key enzyme families with importance to both natural biomass turnover and industrial biotechnology. Here, we report that, depending on where they are attached, glycans play substantially different roles for the enzyme in thermal and proteolytic stability, substrate binding, and substrate turnover. Overall, these results provide fundamental insights into how glycans affect critical properties of biomass-degrading enzymes. In nature, many microbes secrete mixtures of glycoside hydrolases, oxidoreductases, and accessory enzymes to deconstruct polysaccharides and lignin in plants. These enzymes are often decorated with N- and O-glycosylation, the roles of which have been broadly attributed to protection from proteolysis, as the extracellular milieu is an aggressive environment. Glycosylation has been shown to sometimes affect activity, but these effects are not fully understood. Here, we examine N- and O-glycosylation on a model, multimodular glycoside hydrolase family 7 cellobiohydrolase (Cel7A), which exhibits an O-glycosylated carbohydrate-binding module (CBM) and an O-glycosylated linker connected to an N- and O-glycosylated catalytic domain (CD)—a domain architecture common to many biomass-degrading enzymes. We report consensus maps for Cel7A glycosylation that include glycan sites and motifs. Additionally, we examine the roles of glycans on activity, substrate binding, and thermal and proteolytic stability. N-glycan knockouts on the CD demonstrate that N-glycosylation has little impact on cellulose conversion or binding, but does have major stability impacts. O-glycans on the CBM have little impact on binding, proteolysis, or activity in the whole-enzyme context. However, linker O-glycans greatly impact cellulose conversion via their contribution to proteolysis resistance. Molecular simulations predict an additional role for linker O-glycans, namely that they are responsible for maintaining separation between ordered domains when Cel7A is engaged on cellulose, as models predict α-helix formation and decreased cellulose interaction for the nonglycosylated linker. Overall, this study reveals key roles for N- and O-glycosylation that are likely broadly applicable to other plant cell-wall–degrading enzymes.
Biotechnology for Biofuels | 2014
Roman Brunecky; Sarah E. Hobdey; Larry E. Taylor; Ling Tao; Melvin P. Tucker; Michael E. Himmel; Stephen R. Decker
IntroductionThe efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic enzyme cocktails followed by conventional saccharification with commercial enzyme preparations. Dilute acid pretreated corn stover was subjected to this new procedure to test its efficacy. Thermal tolerant enzymes from Acidothermus cellulolyticus and Caldicellulosiruptor bescii were used to pre-digest pretreated biomass at elevated temperatures prior to saccharification by the commercial cellulase formulation.ResultsWe report that pre-digestion of biomass with these enzymes at elevated temperatures prior to addition of the commercial cellulase formulation increased conversion rates and yields when compared to commercial cellulase formulation alone under low solids conditions.ConclusionOur results demonstrating improvements in rates and yields of conversion point the way forward for hybrid biomass conversion schemes utilizing catalytic amounts of hyperthermophilic enzymes.
Applied and Environmental Microbiology | 2016
Sarah E. Hobdey; Brandon C. Knott; Majid Haddad Momeni; Larry E. Taylor; Anna S. Borisova; Kara Podkaminer; Todd A. VanderWall; Michael E. Himmel; Stephen R. Decker; Gregg T. Beckham; Jerry Ståhlberg
ABSTRACT Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) are enzymes commonly employed in plant cell wall degradation across eukaryotic kingdoms of life, as they provide significant hydrolytic potential in cellulose turnover. To date, many fungal GH7 CBHs have been examined, yet many questions regarding structure-activity relationships in these important natural and commercial enzymes remain. Here, we present the crystal structures and a biochemical analysis of two GH7 CBHs from social amoeba: Dictyostelium discoideum Cel7A (DdiCel7A) and Dictyostelium purpureum Cel7A (DpuCel7A). DdiCel7A and DpuCel7A natively consist of a catalytic domain and do not exhibit a carbohydrate-binding module (CBM). The structures of DdiCel7A and DpuCel7A, resolved to 2.1 Å and 2.7 Å, respectively, are homologous to those of other GH7 CBHs with an enclosed active-site tunnel. Two primary differences between the Dictyostelium CBHs and the archetypal model GH7 CBH, Trichoderma reesei Cel7A (TreCel7A), occur near the hydrolytic active site and the product-binding sites. To compare the activities of these enzymes with the activity of TreCel7A, the family 1 TreCel7A CBM and linker were added to the C terminus of each of the Dictyostelium enzymes, creating DdiCel7ACBM and DpuCel7ACBM, which were recombinantly expressed in T. reesei. DdiCel7ACBM and DpuCel7ACBM hydrolyzed Avicel, pretreated corn stover, and phosphoric acid-swollen cellulose as efficiently as TreCel7A when hydrolysis was compared at their temperature optima. The Ki of cellobiose was significantly higher for DdiCel7ACBM and DpuCel7ACBM than for TreCel7A: 205, 130, and 29 μM, respectively. Taken together, the present study highlights the remarkable degree of conservation of the activity of these key natural and industrial enzymes across quite distant phylogenetic trees of life. IMPORTANCE GH7 CBHs are among the most important cellulolytic enzymes both in nature and for emerging industrial applications for cellulose breakdown. Understanding the diversity of these key industrial enzymes is critical to engineering them for higher levels of activity and greater stability. The present work demonstrates that two GH7 CBHs from social amoeba are surprisingly quite similar in structure and activity to the canonical GH7 CBH from the model biomass-degrading fungus T. reesei when tested under equivalent conditions (with added CBM-linker domains) on an industrially relevant substrate.
Direct Microbial Conversion of Biomass to Advanced Biofuels | 2015
Sarah E. Hobdey; Bryon S. Donohoe; Roman Brunecky; Michael E. Himmel; Yannick J. Bomble
Biomass represents a vast source of carbon for cellulosic biofuels production. Understanding and developing better strategies for the conversion of cellulosic biomass is essential for the success of this industry. Over the years, we have used the diversity found in nature to guide the development of more efficient enzyme preparations tailored for biomass degradation. Microbes have evolved to degrade and use plant-derived cellulosic substrates in their environments. However, bacteria and fungi use drastically different but complementary approaches to overcome the inherent recalcitrance of biomass substrates. Here, we present the most common biomass degradation mechanisms found in nature. Additionally, we highlight the importance of understanding their strategies and complementarity to develop better enzyme preparations and microbes to achieve sustainable biofuels production.
Direct Microbial Conversion of Biomass to Advanced Biofuels | 2015
John M. Yarbrough; Ashutosh Mittal; Yannick J. Bomble; Jessica L. Olstad; Edward J. Wolfrum; Sarah E. Hobdey; Michael E. Himmel; Todd B. Vinzant
Abstract Multiple factors play a role in the direct microbial conversion of biomass. Particle size has been shown to play a significant role in achieving efficient enzymatic hydrolysis of biomass with free cellulase systems. In this study, the direct microbial conversion performance of Clostridium thermocellum is evaluated utilizing hot water extracted poplar sized by sieving to particles ranging between 63 μm to 6 mm, using conditions which maintain the chemical composition. Culture carbon:nitrogen ratios and dry weights were used to differentiate the contribution of microbial mass from residual poplar mass. This work shows that for poplar, the substrate particle size influences the overall biomass conversion by C. thermocellum , with particles sized between 63 μm and 250 μm displaying the greatest conversion (50%). Moreover, the complex nature of biomass (i.e., chemical composition, structure, porosity, etc.) appears to play a greater role than particle size in influencing the overall potential for microbial conversion.