Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah E. Lester is active.

Publication


Featured researches published by Sarah E. Lester.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation.

Mary I. O'Connor; John F. Bruno; Steven D. Gaines; Benjamin S. Halpern; Sarah E. Lester; Brian P. Kinlan; Jack M. Weiss

Temperature controls the rate of fundamental biochemical processes and thereby regulates organismal attributes including development rate and survival. The increase in metabolic rate with temperature explains substantial among-species variation in life-history traits, population dynamics, and ecosystem processes. Temperature can also cause variability in metabolic rate within species. Here, we compare the effect of temperature on a key component of marine life cycles among a geographically and taxonomically diverse group of marine fish and invertebrates. Although innumerable lab studies document the negative effect of temperature on larval development time, little is known about the generality versus taxon-dependence of this relationship. We present a unified, parameterized model for the temperature dependence of larval development in marine animals. Because the duration of the larval period is known to influence larval dispersal distance and survival, changes in ocean temperature could have a direct and predictable influence on population connectivity, community structure, and regional-to-global scale patterns of biodiversity.


Nature | 2012

An index to assess the health and benefits of the global ocean

Benjamin S. Halpern; Catherine Longo; Darren Hardy; Karen L. McLeod; Jameal F. Samhouri; Steven K. Katona; Kristin M. Kleisner; Sarah E. Lester; Jennifer K. O’Leary; Marla Ranelletti; Andrew A. Rosenberg; Courtney Scarborough; Elizabeth R. Selig; Benjamin D. Best; Daniel R. Brumbaugh; F. Stuart Chapin; Larry B. Crowder; Kendra L. Daly; Scott C. Doney; Cristiane T. Elfes; Michael J. Fogarty; Steven D. Gaines; Kelsey I. Jacobsen; Leah Bunce Karrer; Heather M. Leslie; Elizabeth Neeley; Daniel Pauly; Stephen Polasky; Bud Ris; Kevin St. Martin

The ocean plays a critical role in supporting human well-being, from providing food, livelihoods and recreational opportunities to regulating the global climate. Sustainable management aimed at maintaining the flow of a broad range of benefits from the ocean requires a comprehensive and quantitative method to measure and monitor the health of coupled human–ocean systems. We created an index comprising ten diverse public goals for a healthy coupled human–ocean system and calculated the index for every coastal country. Globally, the overall index score was 60 out of 100 (range 36–86), with developed countries generally performing better than developing countries, but with notable exceptions. Only 5% of countries scored higher than 70, whereas 32% scored lower than 50. The index provides a powerful tool to raise public awareness, direct resource management, improve policy and prioritize scientific research.


Science | 2012

Status and solutions for the world's unassessed fisheries.

Christopher Costello; Daniel Ovando; Ray Hilborn; Steven D. Gaines; Olivier Deschenes; Sarah E. Lester

First, Find Fish While salmon, cod, and tuna fisheries are regularly monitored and assessed, this is not the case for about 80% of the fish species harvested throughout the world. Costello et al. (p. 517 published online 27 September; see the Perspective by Pikitch) used a model that integrates harvest, population, and ecological data to estimate the status of unassessed fisheries, based on ecologically analogous, regularly assessed fisheries. Generally, unassessed fisheries are in worse condition with declining fish stocks compared with regularly assessed fisheries. Poorly monitored, small-size fisheries are in decline, but few of them are near collapse. Recent reports suggest that many well-assessed fisheries in developed countries are moving toward sustainability. We examined whether the same conclusion holds for fisheries lacking formal assessment, which comprise >80% of global catch. We developed a method using species’ life-history, catch, and fishery development data to estimate the status of thousands of unassessed fisheries worldwide. We found that small unassessed fisheries are in substantially worse condition than assessed fisheries, but that large unassessed fisheries may be performing nearly as well as their assessed counterparts. Both small and large stocks, however, continue to decline; 64% of unassessed stocks could provide increased sustainable harvest if rebuilt. Our results suggest that global fishery recovery would simultaneously create increases in abundance (56%) and fishery yields (8 to 40%).


Proceedings of the National Academy of Sciences of the United States of America | 2010

Placing marine protected areas onto the ecosystem-based management seascape

Benjamin S. Halpern; Sarah E. Lester; Karen L. McLeod

The rapid increase in the science and implementation of marine protected areas (MPAs) around the world in the past 15 years is now being followed by similar increases in the science and application of marine ecosystem-based management (EBM). Despite important overlaps and some common goals, these two approaches have remained either separated in the literature and in conservation and management efforts or treated as if they are one and the same. In the cases when connections are acknowledged, there is often little assessment of if or how well MPAs can achieve specific EBM goals. Here we start by critically evaluating commonalities and differences between MPAs and EBM. Next, we use global analyses to show where and how much no-take marine reserves can be expected to contribute to EBM goals, specifically by reducing the cumulative impacts of stressors on ocean ecosystems. These analyses revealed large stretches of coastal oceans where reserves can play a major role in reducing cumulative impacts and thus improving overall ocean condition, at the same time highlighting the limitations of marine reserves as a single tool to achieve comprehensive EBM. Ultimately, better synergies between these two burgeoning approaches provide opportunities to greatly benefit ocean health.


Environmental Conservation | 2009

Spillover from marine reserves and the replenishment of fished stocks

Benjamin S. Halpern; Sarah E. Lester; Julie B. Kellner

Author Posting.


International Journal of Biodiversity Science, Ecosystems Services & Management | 2012

Modeling benefits from nature: using ecosystem services to inform coastal and marine spatial planning

Anne D. Guerry; Mary Ruckelshaus; Joey R. Bernhardt; Gregory Guannel; Choong Ki Kim; Matthew Marsik; Michael Papenfus; Jodie E. Toft; Gregory Verutes; Spencer A. Wood; Michael W. Beck; Francis Chan; Kai M. A. Chan; Guy Gelfenbaum; Barry Gold; Benjamin S. Halpern; William Labiosa; Sarah E. Lester; Phil S. Levin; Melanie McField; Malin L. Pinsky; Mark L. Plummer; Stephen Polasky; Peter Ruggiero; David A. Sutherland; Heather Tallis; Andrew Day; Jennifer Spencer

People around the world are looking to marine ecosystems to provide additional benefits to society. As they consider expanding current uses and investing in new ones, new management approaches are needed that will sustain the delivery of the diverse benefits that people want and need. An ecosystem services framework provides metrics for assessing the quantity, quality, and value of benefits obtained from different portfolios of uses. Such a framework has been developed for assessments on land, and is now being developed for application to marine ecosystems. Here, we present marine Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), a new tool to assess (i.e., map, model, and value) multiple services provided by marine ecosystems. It allows one to estimate changes in a suite of services under different management scenarios and to investigate trade-offs among the scenarios, including implications of drivers like climate. We describe key inputs and outputs of each of the component ecosystem service models and present results from an application to the West Coast of Vancouver Island, British Columbia, Canada. The results demonstrate how marine InVEST can be used to help shape the dialogue and inform decision making in a marine spatial planning context.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Evolving science of marine reserves: New developments and emerging research frontiers

Steven D. Gaines; Sarah E. Lester; Kirsten Grorud-Colvert; Christopher Costello; Richard Pollnac

The field of marine reserve science has matured greatly over the last decade, moving beyond studies of single reserves and beyond perspectives from single disciplines. This Special Feature exemplifies recent advances in marine reserve research, showing insights gained from synthetic studies of reserve networks, long-term changes within reserves, integration of social and ecological science research, and balance between reserve design for conservation as well as fishery and other commercial objectives. This rich body of research helps to inform conservation planning for marine ecosystems but also poses new challenges for further study, including how to best design integrated fisheries management and conservation systems, how to effectively evaluate the performance of entire reserve networks, and how to examine the complex coupling between ecological and socioeconomic responses to reserve networks.


Proceedings of the Royal Society of London B: Biological Sciences | 2005

The relationship between pelagic larval duration and range size in tropical reef fishes: a synthetic analysis

Sarah E. Lester; Benjamin I. Ruttenberg

We address the conflict in earlier results regarding the relationship between dispersal potential and range size. We examine all published pelagic larval duration data for tropical reef fishes. Larval duration is a convenient surrogate for dispersal potential in marine species that are sedentary as adults and that therefore only experience significant dispersal during their larval phase. Such extensive quantitative dispersal data are only available for fishes and thus we use a unique dataset to examine the relationship between dispersal potential and range size. We find that dispersal potential and range size are positively correlated only in the largest ocean basin, the Indo-Pacific, and that this pattern is driven primarily by the spatial distribution of habitat and dispersal barriers. Furthermore, the relationship strengthens at higher taxonomic levels, suggesting an evolutionary mechanism. We document a negative correlation between species richness and larval duration at the family level in the Indo-Pacific, implying that speciation rate may be negatively related to dispersal potential. If increased speciation rate within a taxonomic group results in smaller range sizes within that group, speciation rate could regulate the association between range size and dispersal potential.


Nature | 2017

Capacity shortfalls hinder the performance of marine protected areas globally

David Gill; Michael B. Mascia; Gabby N. Ahmadia; Louise Glew; Sarah E. Lester; Megan Barnes; Ian D. Craigie; Emily S. Darling; Christopher M. Free; Jonas Geldmann; Susie Holst; Olaf P. Jensen; Alan T. White; Xavier Basurto; Lauren Coad; Ruth D. Gates; Greg Guannel; Peter J. Mumby; Hannah Thomas; Sarah Whitmee; Stephen Woodley; Helen E. Fox

Marine protected areas (MPAs) are increasingly being used globally to conserve marine resources. However, whether many MPAs are being effectively and equitably managed, and how MPA management influences substantive outcomes remain unknown. We developed a global database of management and fish population data (433 and 218 MPAs, respectively) to assess: MPA management processes; the effects of MPAs on fish populations; and relationships between management processes and ecological effects. Here we report that many MPAs failed to meet thresholds for effective and equitable management processes, with widespread shortfalls in staff and financial resources. Although 71% of MPAs positively influenced fish populations, these conservation impacts were highly variable. Staff and budget capacity were the strongest predictors of conservation impact: MPAs with adequate staff capacity had ecological effects 2.9 times greater than MPAs with inadequate capacity. Thus, continued global expansion of MPAs without adequate investment in human and financial capacity is likely to lead to sub-optimal conservation outcomes.


Ecosphere | 2012

Sea sick? Setting targets to assess ocean health and ecosystem services

Jameal F. Samhouri; Sarah E. Lester; Elizabeth R. Selig; Benjamin S. Halpern; Michael J. Fogarty; Catherine Longo; Karen L. McLeod

The benefits provided by a healthy ocean are receiving increasing attention in policy and management spheres. A fundamental challenge with assessing ocean health and ecosystem services is that we lack a scientific framework for expressing ecosystem conditions quantitatively in relation to management goals. Here we outline and operationalize a conceptual framework for identifying meaningful reference points and quantifying the current ecosystem state relative to them. The framework requires clear articulation of management goals and is built on a review of current scientific understanding and assessment of data availability. It develops a structured approach for choosing among three classes of reference points, including: (1) functional relationships that establish the ocean state that can be produced and sustained under different environmental conditions, (2) time series approaches that compare current to previous capacities to obtain a particular ocean state in a specific location, and (3) spatial reference points that compare current capacities to achieve a desired ocean state across regional (or, if necessary, global) scales. We illustrate this general framework through the lens of ocean health defined in terms of a coupled social-ecological system, with examples from fisheries, marine livelihoods, and water quality in the USA. Assessment of ocean health and ecosystem services can be significantly influenced by the choice of indicators used to track changes in a management goal, the type of reference point selected, and how one measures the distance of the current state from the reference point. This framework provides flexible, standardized methods for evaluating ocean health and ecosystem services that can advance important components of ecosystem-based management, including marine spatial planning, ecosystem service valuation, and integrated ecosystem assessments.

Collaboration


Dive into the Sarah E. Lester's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Crow White

California Polytechnic State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge