Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Everitt is active.

Publication


Featured researches published by Sarah Everitt.


International Journal of Radiation Oncology Biology Physics | 2013

Predicting Esophagitis After Chemoradiation Therapy for Non-Small Cell Lung Cancer: An Individual Patient Data Meta-Analysis

David A. Palma; Suresh Senan; Cary Oberije; J. Belderbos; Núria Rodríguez de Dios; Jeffrey D. Bradley; R. Bryan Barriger; Marta Moreno-Jiménez; Tae Hyun Kim; Sara Ramella; Sarah Everitt; Ramesh Rengan; Lawrence B. Marks; Kim De Ruyck; Andrew Warner; George Rodrigues

PURPOSE Concurrent chemoradiation therapy (CCRT) improves survival compared with sequential treatment for locally advanced non-small cell lung cancer, but it increases toxicity, particularly radiation esophagitis (RE). Validated predictors of RE for clinical use are lacking. We performed an individual-patient-data meta-analysis to determine factors predictive of clinically significant RE. METHODS AND MATERIALS After a systematic review of the literature, data were obtained on 1082 patients who underwent CCRT, including patients from Europe, North America, Asia, and Australia. Patients were randomly divided into training and validation sets (2/3 vs 1/3 of patients). Factors predictive of RE (grade≥2 and grade≥3) were assessed using logistic modeling, with the concordance statistic (c statistic) used to evaluate the performance of each model. RESULTS The median radiation therapy dose delivered was 65 Gy, and the median follow-up time was 2.1 years. Most patients (91%) received platinum-containing CCRT regimens. The development of RE was common, scored as grade 2 in 348 patients (32.2%), grade 3 in 185 (17.1%), and grade 4 in 10 (0.9%). There were no RE-related deaths. On univariable analysis using the training set, several baseline factors were statistically predictive of RE (P<.05), but only dosimetric factors had good discrimination scores (c>.60). On multivariable analysis, the esophageal volume receiving ≥60 Gy (V60) alone emerged as the best predictor of grade≥2 and grade≥3 RE, with good calibration and discrimination. Recursive partitioning identified 3 risk groups: low (V60<0.07%), intermediate (V60 0.07% to 16.99%), and high (V60≥17%). With use of the validation set, the predictive model performed inferiorly for the grade≥2 endpoint (c=.58) but performed well for the grade≥3 endpoint (c=.66). CONCLUSIONS Clinically significant RE is common, but life-threatening complications occur in <1% of patients. Although several factors are statistically predictive of RE, the V60 alone provides the best predictive ability. Efforts to reduce the V60 should be prioritized, with further research needed to identify and validate new predictive factors.


International Journal of Radiation Oncology Biology Physics | 2011

Distribution of proliferating bone marrow in adult cancer patients determined using FLT-PET imaging.

James A. Hayman; Jason Callahan; Alan Herschtal; Sarah Everitt; David Binns; Rod J. Hicks; Michael P. Mac Manus

PURPOSE Given that proliferating hematopoietic stem cells are especially radiosensitive, the bone marrow is a potential organ at risk, particularly with the use of concurrent chemotherapy and radiotherapy. Existing data on bone marrow distribution have been determined from the weight and visual appearance of the marrow in cadavers. 18F-fluoro-L-deoxythymidine concentrates in bone marrow, and we used its intensity on positron emission tomography imaging to quantify the location of the proliferating bone marrow. METHODS AND MATERIALS The 18F-fluoro-L-deoxythymidine positron emission/computed tomography scans performed at the Peter MacCallum Cancer Centre between 2006 and 2009 on adult cancer patients were analyzed. At a minimum, the scans included the mid-skull through the proximal femurs. A software program developed at our institution was used to calculate the percentage of administered activity in 11 separately defined bony regions. RESULTS The study population consisted of 13 patients, 6 of whom were men. Their median age was 61 years. Of the 13 patients, 9 had lung cancer, 2 had colon cancer, and 1 each had melanoma and leiomyosarcoma; 6 had received previous, but not recent, chemotherapy. The mean percentage of proliferating bone marrow by anatomic site was 2.9%±2.1% at the skull, 1.9%±1.2% at the proximal humeri, 2.9%±1.3% at the sternum, 8.8%±4.7% at the ribs and clavicles, 3.8%±0.9% at the scapulas, 4.3%±1.6% at the cervical spine, 19.9%±2.6% at the thoracic spine, 16.6%±2.2% at the lumbar spine, 9.2%±2.3% at the sacrum, 25.3%±4.9% at the pelvis, and 4.5%±2.5% at the proximal femurs. CONCLUSION Our modern estimates of bone marrow distribution in actual cancer patients using molecular imaging of the proliferating marrow provide updated data for optimizing normal tissue sparing during external beam radiotherapy planning.


Cancer | 2010

High rates of tumor growth and disease progression detected on serial pretreatment fluorodeoxyglucose-positron emission tomography/computed tomography scans in radical radiotherapy candidates with nonsmall cell lung cancer.

Sarah Everitt; Alan Herschtal; Jason Callahan; Nikki Plumridge; David Ball; Tomas Kron; Michal Schneider-Kolsky; David Binns; Rodney J. Hicks; Michael MacManus

The authors studied growth and progression of untreated nonsmall cell lung cancer (NSCLC) by comparing diagnostic and radiotherapy (RT) planning fluorodeoxyglucose (FDG)‐positron emission tomography (PET)/computed tomography (CT) scans before proposed radical chemo‐RT.


Radiotherapy and Oncology | 2013

The use of fused PET/CT images for patient selection and radical radiotherapy target volume definition in patients with non-small cell lung cancer: Results of a prospective study with mature survival data

Michael P. Mac Manus; Sarah Everitt; Mike Bayne; David Ball; Nikki Plumridge; David Binns; Alan Herschtal; Deborah Cruickshank; Mathias Bressel; Rodney J. Hicks

BACKGROUND AND PURPOSE This prospective study investigated the impact of radiotherapy (RT)-planning FDG-PET/CT on management of non-small cell lung cancer (NSCLC). MATERIALS AND METHODS Patients still eligible for radical RT after conventional staging underwent RT-planning PET/CT and, if disease was still treatable to 60 Gy, they entered our planning study, where visually-contoured tumour volumes derived with and without PET information were compared. If PET/CT detected advanced disease, palliative therapy was given. Overall survival (OS) for palliative and curative patients was compared. RESULTS Of 76 eligible patients, only 50 (66%) received radical chemoRT after PET/CT while 26 (34%) received palliative therapies because PET/CT detected advanced disease. Without PET, FDG-avid tumour would reside outside the planning target volume (PTV) in 36% of radical cases and in 25% <90% of the PTV would have received >95% prescribed dose. OS for all patients was 56.8% and 24.9% at 1 and 4 years, respectively. OS for patients given chemoRT was 77.5% and 35.6% at 1 and 4 years, respectively and was 32% for stage IIIA patients at 4 years. OS for patients treated palliatively was inferior (P<0.001); 16.3% and 4.1% at 1 and 4 years, respectively. CONCLUSIONS Planning PET/CT frequently changed management and was associated with excellent survival. Survival data from this study were presented in part at the 2011 World Lung Cancer Conference, Amsterdam and planning data at the 2010 Annual Scientific Meeting of the American Society for Therapeutic Radiology and Oncology, Chicago.


The Journal of Nuclear Medicine | 2014

Differential 18F-FDG and 18F-FLT Uptake on Serial PET/CT Imaging Before and During Definitive Chemoradiation for Non–Small Cell Lung Cancer

Sarah Everitt; David Ball; Rodney J. Hicks; Jason Callahan; Nikki Plumridge; Marnie Collins; Alan Herschtal; David Binns; Tomas Kron; Michal Schneider; Michael MacManus

We aimed to prospectively observe cellular metabolism and proliferation in patients with non–small-cell lung cancer (NSCLC) during radical chemoradiation therapy using serial PET/CT with 18F-FDG and 3′-deoxy-3′-18F-fluorothymidine (18F-FLT). Methods: Twenty patients with stage I–III NSCLC and candidates for radical chemoradiation therapy (60 Gy in 30 fractions over 6 wk) were recruited. 18F-FDG and 18F-FLT PET/CT were performed at baseline and during therapy (weeks 2 and 4). Tumor response was assessed semiquantitatively and using visual response criteria. Results: The median and range for primary tumor volume (cm3) at baseline on 18F-FDG were 28 and 2–241, respectively, and on 18F-FLT 31 and 2–184, respectively. At week 2, 18F-FDG was 26 (range, 2–164), and 18F-FLT was 11 (range, 0–111). At week 4, 18F-FDG was 19 (1–147), and 18F-FLT was 7 (0–48). The median and range of maximum standardized uptake value (SUVmax) at baseline on 18F-FDG were 14 and 4–31, respectively, and on 18F-FLT 6 and 2–12, respectively. Week 2 18F-FDG median SUVmax was 10 (2–31), and 18F-FLT median SUVmax was 3 (1–15); week 4 18F-FDG median SUVmax was 10 (2–15), and 18F-FLT median SUVmax was 2 (2–9). There was fair agreement between visual tumor response on 18F-FDG and 18F-FLT during therapy (Cohens unweighted κ statistic, 0.27 at week 2 and 0.355 at week 4). Cerebral metastases were detected on 1 baseline 18F-FLT scan, resulting in palliative management. Progressive disease was detected on week 2 scans in 3 patients, resulting in changes to radiation therapy (2 patients) and treatment intent (1 patient). Conclusion: This study demonstrates that 18F-FLT PET/CT is a more sensitive tracer of early treatment response than 18F-FDG PET/CT. The ability of these tracers to detect distinct biologic processes may lead to their use as biomarkers for personalized radiation therapy and prognosis in the future.


Radiotherapy and Oncology | 2013

The impact of time between staging PET/CT and definitive chemo-radiation on target volumes and survival in patients with non-small cell lung cancer

Sarah Everitt; Nikki Plumridge; Alan Herschtal; Mathias Bressel; David Ball; Jason Callahan; Tomas Kron; Michal Schneider-Kolsky; David Binns; Rodney J. Hicks; Michael P. Mac Manus

BACKGROUND AND PURPOSE To investigate the impact of treatment delays on radiation therapy (RT) target volumes and overall survival (OS) in patients with non-small cell lung cancer (NSCLC) who underwent two baseline FDG PET/CT scans. MATERIAL AND METHODS Patients underwent a staging (PET1) and RT planning (PET2) FDG PET/CT scan. At PET1 all patients were eligible for radical chemo-RT. OS and progression-free survival (PFS) were compared for patients remaining eligible for radical RT and those treated palliatively because PET2 showed progression. RT target volumes were contoured using PET1 and PET2. Normal tissue doses were compared for patients remaining eligible for radical RT. RESULTS Eighty-two patients underwent PET2 scans between October 2004 and February 2007. Of these, 21 had a prior PET1 scan, median 23 days apart (range 8-176 days). Six patients (29%) were unsuitable for radical RT after PET2; five received palliative treatment and one received no treatment. Patients treated palliatively had significantly worse OS and PFS than patients treated radically p<0.001. Mean RT tumour volume increased from 105cc to 198cc (p<0.005) between scans. CONCLUSIONS Disease progression while awaiting initiation of curative RT in NSCLC is associated with larger treatment volumes and worse survival.


Radiation Oncology | 2014

Geographic miss of lung tumours due to respiratory motion: a comparison of 3D vs 4D PET/CT defined target volumes

Jason Callahan; Tomas Kron; Shankar Siva; Nathalie Simoens; Amanda Edgar; Sarah Everitt; Michal Schneider; Rodney J. Hicks

BackgroundPET/CT scans acquired in the radiotherapy treatment position are typically performed without compensating for respiratory motion. The purpose of this study was to investigate geographic miss of lung tumours due to respiratory motion for target volumes defined on a standard 3D-PET/CT.Methods29 patients staged for pulmonary malignancy who completed both a 3D-PET/CT and 4D-PET/CT were included. A 3D-Gross Tumour Volume (GTV) was defined on the standard whole body PET/CT scan. Subsequently a 4D-GTV was defined on a 4D-PET/CT MIP. A 5 mm, 10 mm, 15 mm symmetrical and 15×10 mm asymmetrical Planning Target Volume (PTV) was created by expanding the 3D-GTV and 4D-GTV’s. A 3D conformal plan was generated and calculated to cover the 3D-PTV. The 3D plan was transferred to the 4D-PTV and analysed for geographic miss. Three types of miss were measured. Type 1: any part of the 4D-GTV outside the 3D-PTV. Type 2: any part of the 4D-PTV outside the 3D-PTV. Type 3: any part of the 4D-PTV receiving less than 95% of the prescribed dose. The lesion motion was measured to look at the association between lesion motion and geographic miss.ResultsWhen a standard 15 mm or asymmetrical PTV margin was used there were 1/29 (3%) Type 1 misses. This increased 7/29 (24%) for the 10 mm margin and 23/29 (79%) for a 5 mm margin. All patients for all margins had a Type 2 geographic miss. There was a Type 3 miss in 25 out of 29 cases in the 5, 10, and 15 mm PTV margin groups. The asymmetrical margin had one additional Type 3 miss. Pearson analysis showed a correlation (p < 0.01) between lesion motion and the severity of the different types of geographic miss.ConclusionWithout any form of motion suppression, the current standard of a 3D- PET/CT and 15 mm PTV margin employed for lung lesions has an increasing risk of significant geographic miss when tumour motion increases. Use of smaller asymmetric margins in the cranio-caudal direction does not comprise tumour coverage. Reducing PTV margins for volumes defined on 3D-PET/CT will greatly increase the chance and severity of a geometric miss due to respiratory motion. 4D-imaging reduces the risk of geographic miss across the population of tumour sizes and magnitude of motion investigated in the study.


Journal of Thoracic Oncology | 2006

Role of PET-CT in the Optimization of Thoracic Radiotherapy

Michael P. Mac Manus; Rodney J. Hicks; Sarah Everitt

PET-CT is an exciting new imaging technology that simultaneously acquires detailed structural and functional imaging information. PET is having an increasing inpact on the management of locoregionally advanced non-small cell lung cancer with radiotherapy. PET combined with CT is much more accurate than CT alone in staging lung cancer and patients treated with radical radiotherapy or chemoradiotherapy have better outcomes because of superior patient selection. PET also has the potential to improve radiotherapy planning by minimizing unnecessary irradiation of normal tissues and by reducing the risk of geographic miss. PET influences treatment planning in a high proportion of cases and therefore radiotherapy dose escalation without PET may be futile.


The Journal of Nuclear Medicine | 2014

Effect of Platinum-Based Chemoradiotherapy on Cellular Proliferation in Bone Marrow and Spleen, Estimated by 18 F- FLT PET/CT in Patients with Locally Advanced Non-Small Cell Lung Cancer

Antoine Leimgruber; Andreas Möller; Sarah Everitt; Marine Chabrot; David Ball; Ben Solomon; Michael MacManus; Rodney J. Hicks

Historically, it has been difficult to monitor the acute impact of anticancer therapies on hematopoietic organs on a whole-body scale. Deeper understanding of the effect of treatments on bone marrow would be of great potential value in the rational design of intensive treatment regimens. 3′-deoxy-3′-18F-fluorothymidine (18F-FLT) is a functional radiotracer used to study cellular proliferation. It is trapped in cells in proportion to thymidine-kinase 1 enzyme expression, which is upregulated during DNA synthesis. This study investigates the potential of 18F-FLT to monitor acute effects of chemotherapy on cellular proliferation and its recovery in bone marrow, spleen, and liver during treatment with 2 different chemotherapy regimens. Methods: Sixty patients with non–small cell lung cancer underwent concurrent radical chemoradiotherapy to 60 Gy in 6 wk with either cisplatin/etoposide (C/E, n = 28) weeks 1 and 5 or weekly carboplatin/paclitaxel (C/P, n = 32) regimens. 18F-FLT and 18F-FDG PET with CT were performed at baseline, week 2 (day 9 for 18F-FLT and day 10 for 18F-FDG PET), and week 4 (day 23 for 18F-FLT and day 24 for 18F-FDG PET). Visual and semiquantitative standardized uptake value (SUV) measurements were performed in bone marrow outside the radiotherapy field, liver, spleen, and small bowel. These were correlated to blood counts and smears in a subset of patients. Results: The C/E group exhibited a drop in bone marrow 18F-FLT uptake at week 2 (median SUVmax [maximum SUV] decrease to 31%, 8.7–6.0, P < 0.001), with recovery at week 4, reflecting the absence of chemotherapy between these times. By contrast, the weekly C/P group showed gradually declining bone marrow uptake (P > 0.05). Spleen uptake in both cohorts decreased at week 2, with intense rebound activity at week 4 (SUVmax week 4 at 58% above baseline: 2.4–3.8, for C/E, respectively, 30% for C/P: 2.7–3.5, P < 0.001). Liver uptake changed little. 18F-FLT changes preceded neutrophil count reductions. 18F-FDG uptake in marrow liver and spleen changed much less than 18F-FLT. Conclusion: 18F-FLT imaging may be used to quantify impairment and recovery of bone marrow by specific chemotherapy regimens and may also enable imaging of organ-specific processes such as spleen activation. 18F-FLT is superior to 18F-FDG for this purpose. This technology may support novel treatment planning and monitoring approaches in oncology patients.


PLOS ONE | 2015

Spleen Volume Variation in Patients with Locally Advanced Non-Small Cell Lung Cancer Receiving Platinum-Based Chemo-Radiotherapy

Shu Wen Wen; Sarah Everitt; Justin Bedő; Marine Chabrot; David Ball; Benjamin Solomon; Michael MacManus; Rodney J. Hicks; Andreas Möller; Antoine Leimgruber

There is renewed interest in the immune regulatory role of the spleen in oncology. To date, very few studies have examined macroscopic variations of splenic volume in the setting of cancer, prior to or during therapy, especially in humans. Changes in splenic volume may be associated with changes in splenic function. The purpose of this study was to investigate variations in spleen volume in NSCLC patients during chemo-radiotherapy. Sixty patients with stage I-IIIB NSCLC underwent radiotherapy (60Gy/30 fractions) for six weeks with concomitant carboplatin/paclitaxel (Ca/P; n = 32) or cisplatin/etoposide (Ci/E; n = 28). A baseline PET/CT scan was performed within 2 weeks prior to treatment and during Weeks 2 and 4 of chemo-radiotherapy. Spleen volume was measured by contouring all CT slices. Significant macroscopic changes in splenic volume occurred early after the commencement of treatment. A significant decrease in spleen volume was observed for 66% of Ca/P and 79% of Ci/E patients between baseline and Week 2. Spleen volume was decreased by 14.2% for Ca/P (p<0.001) and 19.3% for Ci/E (p<0.001) patients. By Week 4, spleen volume was still significantly decreased for Ca/P patients compared to baseline, while for Ci/E patients, spleen volume returned to above baseline levels. This is the first report demonstrating macroscopic changes in the spleen in NSCLC patients undergoing radical chemo-radiotherapy that can be visualized by non-invasive imaging.

Collaboration


Dive into the Sarah Everitt's collaboration.

Top Co-Authors

Avatar

David Ball

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason Callahan

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Michael MacManus

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Tomas Kron

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Alan Herschtal

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

David Binns

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Michael P. Mac Manus

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Nikki Plumridge

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Mathias Bressel

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge