Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah G. Buxbaum is active.

Publication


Featured researches published by Sarah G. Buxbaum.


PLOS Genetics | 2012

Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals.

Zari Dastani; Marie-France Hivert; John Perry; Robert A. Scott; Peter Henneman; M. Heid; Christian Fuchsberger; Toshiko Tanaka; Andrew P. Morris; Aaron Isaacs; Kurt Lohman; James S. Pankow; David Evans; Beate St; Stefania Bandinelli; Olga D. Carlson; Josephine M. Egan; Britt-Marie Loo; Toby Johnson; Robert K. Semple; Tanya M. Teslovich; Matthew A. Allison; Susan Redline; Sarah G. Buxbaum; Karen L. Mohlke; Ingrid Meulenbelt; Christie M. Ballantyne; George Dedoussis; Frank B. Hu; Yongmei Liu

Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10−8–1.2×10−43). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10−4). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10−3, n = 22,044), increased triglycerides (p = 2.6×10−14, n = 93,440), increased waist-to-hip ratio (p = 1.8×10−5, n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10−3, n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10−13, n = 96,748) and decreased BMI (p = 1.4×10−4, n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.


Nature | 2011

The landscape of recombination in African Americans

Anjali G. Hinch; Arti Tandon; Nick Patterson; Yunli Song; Nadin Rohland; C. Palmer; Gary K. Chen; Kai Wang; Sarah G. Buxbaum; Ermeg L. Akylbekova; Melinda C. Aldrich; Christine B. Ambrosone; Christopher I. Amos; Elisa V. Bandera; Sonja I. Berndt; Leslie Bernstein; William J. Blot; Cathryn H. Bock; Eric Boerwinkle; Qiuyin Cai; Neil E. Caporaso; Graham Casey; L. Adrienne Cupples; Sandra L. Deming; W. Ryan Diver; Jasmin Divers; Myriam Fornage; Elizabeth M. Gillanders; Joseph T. Glessner; Curtis C. Harris

Recombination, together with mutation, gives rise to genetic variation in populations. Here we leverage the recent mixture of people of African and European ancestry in the Americas to build a genetic map measuring the probability of crossing over at each position in the genome, based on about 2.1 million crossovers in 30,000 unrelated African Americans. At intervals of more than three megabases it is nearly identical to a map built in Europeans. At finer scales it differs significantly, and we identify about 2,500 recombination hotspots that are active in people of West African ancestry but nearly inactive in Europeans. The probability of a crossover at these hotspots is almost fully controlled by the alleles an individual carries at PRDM9 (P value < 10−245). We identify a 17-base-pair DNA sequence motif that is enriched in these hotspots, and is an excellent match to the predicted binding target of PRDM9 alleles common in West Africans and rare in Europeans. Sites of this motif are predicted to be risk loci for disease-causing genomic rearrangements in individuals carrying these alleles. More generally, this map provides a resource for research in human genetic variation and evolution.


American Journal of Human Genetics | 2003

A Whole-Genome Scan for Obstructive Sleep Apnea and Obesity

Lyle J. Palmer; Sarah G. Buxbaum; Emma K. Larkin; Sanjay R. Patel; Robert C. Elston; Peter V. Tishler; Susan Redline

Obstructive sleep apnea (OSA) is a common, chronic, complex disease associated with serious cardiovascular and neuropsychological sequelae and with substantial social and economic costs. Along with male gender, obesity is the most characteristic feature of OSA in adults. To identify susceptibility loci for OSA, we undertook a 9-cM genome scan in 66 white pedigrees (n=349 subjects) ascertained on the basis of either an affected individual with laboratory-confirmed OSA or a proband who was a neighborhood control individual. Multipoint variance-component linkage analysis was performed for the OSA-associated quantitative phenotypes apnea-hypopnea index (AHI) and body mass index (BMI). Candidate regions on chromosomes 1p (LOD score 1.39), 2p (LOD score 1.64), 12p (LOD score 1.43), and 19p (LOD score 1.40) gave the most evidence for linkage to AHI. BMI was also linked to multiple regions, most significantly to markers on chromosomes 2p (LOD score 3.08), 7p (LOD score 2.53), and 12p (LOD score 3.41). Extended modeling indicated that the evidence for linkage to AHI was effectively removed after adjustment for BMI, with the exception of the candidate regions on chromosomes 2p (adjusted LOD score 1.33) and 19p (adjusted LOD score 1.45). After adjustment for AHI, the primary linkages to BMI remained suggestive but were roughly halved. Our results suggest that there are both shared and unshared genetic factors underlying susceptibility to OSA and obesity and that the interrelationship of OSA and obesity in white individuals may be partially explained by a common causal pathway involving one or more genes regulating both AHI and BMI levels.


American Journal of Human Genetics | 2008

Admixture Mapping of White Cell Count: Genetic Locus Responsible for Lower White Blood Cell Count in the Health ABC and Jackson Heart Studies

Michael A. Nalls; James G. Wilson; Nick Patterson; Arti Tandon; Joseph M. Zmuda; Scott Huntsman; Melissa Garcia; Donglei Hu; Rongling Li; Brock A. Beamer; Kushang V. Patel; Ermeg L. Akylbekova; Joe C. Files; Cheryl L. Hardy; Sarah G. Buxbaum; Herman A. Taylor; David Reich; Tamara B. Harris; Elad Ziv

White blood cell count (WBC) is an important clinical marker that varies among different ethnic groups. African Americans are known to have a lower WBC than European Americans. We surveyed the entire genome for loci underlying this difference in WBC by using admixture mapping. We analyzed data from African American participants in the Health, Aging, and Body Composition Study and the Jackson Heart Study. Participants of both studies were genotyped across >or= 1322 single nucleotide polymorphisms that were pre-selected to be informative for African versus European ancestry and span the entire genome. We used these markers to estimate genetic ancestry in each chromosomal region and then tested the association between WBC and genetic ancestry at each locus. We found a locus on chromosome 1q strongly associated with WBC (p < 10(-12)). The strongest association was with a marker known to affect the expression of the Duffy blood group antigen. Participants who had both copies of the common West African allele had a mean WBC of 4.9 (SD 1.3); participants who had both common European alleles had a mean WBC of 7.1 (SD 1.3). This variant explained approximately 20% of population variation in WBC. We used admixture mapping, a novel method for conducting genetic-association studies, to find a region that was significantly associated with WBC on chromosome 1q. Additional studies are needed to determine the biological mechanism for this effect and its clinical implications.


Circulation | 2004

Genome Scan for Familial Abdominal Aortic Aneurysm Using Sex and Family History as Covariates Suggests Genetic Heterogeneity and Identifies Linkage to Chromosome 19q13

Hidenori Shibamura; Jane M. Olson; Clarissa van Vlijmen-van Keulen; Sarah G. Buxbaum; Doreen M. Dudek; Gerard Tromp; Toru Ogata; Magdalena Skunca; Natzi Sakalihasan; Gerard Pals; Raymond Limet; Gerald L. MacKean; Olivier Defawe; Alain Verloes; Claudette Arthur; Alan G. Lossing; Marjorie Burnett; Taijiro Sueda; Helena Kuivaniemi

Background—Abdominal aortic aneurysm (AAA) is a relatively common disease, with 1% to 2% of the population harboring aneurysms. Genetic risk factors are likely to contribute to the development of AAAs, although no such risk factors have been identified. Methods and Results—We performed a whole-genome scan of AAA using affected-relative-pair (ARP) linkage analysis that includes covariates to allow for genetic heterogeneity. We found strong evidence of linkage (logarithm of odds [LOD] score=4.64) to a region near marker D19S433 at 51.88 centimorgans (cM) on chromosome 19 with 36 families (75 ARPs) when including sex and the number of affected first-degree relatives of the proband (Naff) as covariates. We then genotyped 83 additional families for the same markers and typed additional markers for all families and obtained a LOD score of 4.75 (P =0.00014) with sex, Naff, and their interaction as covariates near marker D19S416 (58.69 cM). We also identified a region on chromosome 4 with a LOD score of 3.73 (P =0.0012) near marker D4S1644 using the same covariate model as for chromosome 19. Conclusions—Our results provide evidence for genetic heterogeneity and the presence of susceptibility loci for AAA on chromosomes 19q13 and 4q31.


American Journal of Human Genetics | 2014

Causal effects of body mass index on cardiometabolic traits and events: A Mendelian randomization analysis

Michael V. Holmes; Leslie A. Lange; Tom Palmer; Matthew B. Lanktree; Kari E. North; Berta Almoguera; Sarah G. Buxbaum; Hareesh R. Chandrupatla; Clara C. Elbers; Yiran Guo; Ron C. Hoogeveen; Jin Li; Yun R. Li; Daniel I. Swerdlow; Mary Cushman; Thomas S. Price; Sean P. Curtis; Myriam Fornage; Hakon Hakonarson; Sanjay R. Patel; Susan Redline; David S. Siscovick; Michael Y. Tsai; James G. Wilson; Yvonne T. van der Schouw; Garret A. FitzGerald; Aroon D. Hingorani; Juan P. Casas; Paul I. W. de Bakker; Stephen S. Rich

Elevated body mass index (BMI) associates with cardiometabolic traits on observational analysis, yet the underlying causal relationships remain unclear. We conducted Mendelian randomization analyses by using a genetic score (GS) comprising 14 BMI-associated SNPs from a recent discovery analysis to investigate the causal role of BMI in cardiometabolic traits and events. We used eight population-based cohorts, including 34,538 European-descent individuals (4,407 type 2 diabetes (T2D), 6,073 coronary heart disease (CHD), and 3,813 stroke cases). A 1 kg/m(2) genetically elevated BMI increased fasting glucose (0.18 mmol/l; 95% confidence interval (CI) = 0.12-0.24), fasting insulin (8.5%; 95% CI = 5.9-11.1), interleukin-6 (7.0%; 95% CI = 4.0-10.1), and systolic blood pressure (0.70 mmHg; 95% CI = 0.24-1.16) and reduced high-density lipoprotein cholesterol (-0.02 mmol/l; 95% CI = -0.03 to -0.01) and low-density lipoprotein cholesterol (LDL-C; -0.04 mmol/l; 95% CI = -0.07 to -0.01). Observational and causal estimates were directionally concordant, except for LDL-C. A 1 kg/m(2) genetically elevated BMI increased the odds of T2D (odds ratio [OR] = 1.27; 95% CI = 1.18-1.36) but did not alter risk of CHD (OR 1.01; 95% CI = 0.94-1.08) or stroke (OR = 1.03; 95% CI = 0.95-1.12). A meta-analysis incorporating published studies reporting 27,465 CHD events in 219,423 individuals yielded a pooled OR of 1.04 (95% CI = 0.97-1.12) per 1 kg/m(2) increase in BMI. In conclusion, we identified causal effects of BMI on several cardiometabolic traits; however, whether BMI causally impacts CHD risk requires further evidence.


PLOS Genetics | 2011

Enhanced Statistical Tests for GWAS in Admixed Populations: Assessment using African Americans from CARe and a Breast Cancer Consortium

Bogdan Pasaniuc; Noah Zaitlen; Guillaume Lettre; Gary K. Chen; Arti Tandon; W.H. Linda Kao; Ingo Ruczinski; Myriam Fornage; David S. Siscovick; Xiaofeng Zhu; Emma K. Larkin; Leslie A. Lange; L. Adrienne Cupples; Qiong Yang; Ermeg L. Akylbekova; Solomon K. Musani; Jasmin Divers; Joe Mychaleckyj; Mingyao Li; George J. Papanicolaou; Robert C. Millikan; Christine B. Ambrosone; Esther M. John; Leslie Bernstein; Wei Zheng; Jennifer J. Hu; Regina G. Ziegler; Sarah J. Nyante; Elisa V. Bandera; Sue A. Ingles

While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale (admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies, as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0 chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies. At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed. Our methods and our publicly available software are broadly applicable to GWAS in admixed populations.


Translational Psychiatry | 2012

Genome-wide meta-analyses of smoking behaviors in African Americans

Sean P. David; Ajna Hamidovic; Gary K. Chen; Andrew W. Bergen; J. Wessel; Jay Kasberger; Wm Brown; S. Petruzella; Evan L. Thacker; Young Jin Kim; Michael A. Nalls; Greg Tranah; Yun Ju Sung; Christine B. Ambrosone; Donna K. Arnett; Elisa V. Bandera; Diane M. Becker; Lewis C. Becker; Sonja I. Berndt; Leslie Bernstein; William J. Blot; Ulrich Broeckel; Sarah G. Buxbaum; Neil E. Caporaso; Graham Casey; Stephen J. Chanock; Sandra L. Deming; W. R. Diver; Charles B. Eaton; Daniel S. Evans

The identification and exploration of genetic loci that influence smoking behaviors have been conducted primarily in populations of the European ancestry. Here we report results of the first genome-wide association study meta-analysis of smoking behavior in African Americans in the Study of Tobacco in Minority Populations Genetics Consortium (n=32 389). We identified one non-coding single-nucleotide polymorphism (SNP; rs2036527[A]) on chromosome 15q25.1 associated with smoking quantity (cigarettes per day), which exceeded genome-wide significance (β=0.040, s.e.=0.007, P=1.84 × 10−8). This variant is present in the 5′-distal enhancer region of the CHRNA5 gene and defines the primary index signal reported in studies of the European ancestry. No other SNP reached genome-wide significance for smoking initiation (SI, ever vs never smoking), age of SI, or smoking cessation (SC, former vs current smoking). Informative associations that approached genome-wide significance included three modestly correlated variants, at 15q25.1 within PSMA4, CHRNA5 and CHRNA3 for smoking quantity, which are associated with a second signal previously reported in studies in European ancestry populations, and a signal represented by three SNPs in the SPOCK2 gene on chr10q22.1. The association at 15q25.1 confirms this region as an important susceptibility locus for smoking quantity in men and women of African ancestry. Larger studies will be needed to validate the suggestive loci that did not reach genome-wide significance and further elucidate the contribution of genetic variation to disparities in cigarette consumption, SC and smoking-attributable disease between African Americans and European Americans.


BMC Public Health | 2010

Interaction of sleep quality and psychosocial stress on obesity in African Americans: the Cardiovascular Health Epidemiology Study (CHES)

Aurelian Bidulescu; Rebecca Din-Dzietham; Dorothy Coverson; Zhimin Chen; Yuan-Xiang Meng; Sarah G. Buxbaum; Gary H. Gibbons; Verna L. Welch

BackgroundCompared with whites, sleep disturbance and sleep deprivation appear more prevalent in African Americans (AA). Long-term sleep deprivation may increase the risk of obesity through multiple metabolic and endocrine alterations. Previous studies have reported contradictory results on the association between habitual sleep duration and obesity. Accordingly, we aimed to assess whether sleep quality and duration are inversely associated with body mass index (BMI) and obesity and test whether these associations are modified by psychosocial stress, known to influence sleep quality.MethodsA sample of 1,515 AA residents of metropolitan Atlanta, aged 30-65 years, was recruited by a random-digit-dialing method in 2007-08. The outcome obesity was defined by BMI (kg/m2) continuously and categorically (BMI ≥ 30 versus BMI < 30). Global sleep quality (GSQ) score was computed as the sum of response values for the seven components of the Pittsburgh Sleep Quality Index (PSQI) scale. GSQ score was defined as a continuous variable (range 0-21) and as tertiles. The general perceived stress (GPS), derived from the validated Cohen scale, was categorized into tertiles to test the interaction. Chi-square tests, correlation coefficients and weighted multiple linear and logistic regression were used to assess the associations of GSQ, GPS and obesity.ResultsThe mean (standard deviation) age was 47.5 (17.0) years, and 1,096 (72%) were women. GSQ score categorized into tertiles was associated with BMI. Among women, after multivariable adjustment that included age, gender, physical activity, smoking status, education, total family income, financial stress and history of hypertension, hypercholesterolemia, diabetes and myocardial infarction, obesity was associated with sleep quality as assessed by GSQ continuous score, [odds ratio, OR (95% C.I.): 1.08 (1.03 - 1.12)], and with a worse sleep disturbance subcomponent score [OR (95% C.I.): 1.48 (1.16 - 1.89)]. Among all participants, stress modified the association between obesity and sleep quality; there was an increased likelihood of obesity in the medium stress category, OR (95% C.I.): 1.09 (1.02 - 1.17).ConclusionSleep quality was associated with obesity in women. The association of sleep quality with obesity was modified by perceived stress. Our results indicate the need for simultaneous assessment of sleep and stress.


PLOS ONE | 2012

Association of Genetic Loci with Sleep Apnea in European Americans and African-Americans: The Candidate Gene Association Resource (CARe)

Sanjay R. Patel; Robert Goodloe; Gourab De; Matthew Kowgier; Jia Weng; Sarah G. Buxbaum; Brian E. Cade; Tibor Fülöp; Sina A. Gharib; Daniel J. Gottlieb; David R. Hillman; Emma K. Larkin; Diane S. Lauderdale; Lin Li; Sutapa Mukherjee; Lyle J. Palmer; Phyllis C. Zee; Xiaofeng Zhu; Susan Redline

Although obstructive sleep apnea (OSA) is known to have a strong familial basis, no genetic polymorphisms influencing apnea risk have been identified in cross-cohort analyses. We utilized the National Heart, Lung, and Blood Institute (NHLBI) Candidate Gene Association Resource (CARe) to identify sleep apnea susceptibility loci. Using a panel of 46,449 polymorphisms from roughly 2,100 candidate genes on a customized Illumina iSelect chip, we tested for association with the apnea hypopnea index (AHI) as well as moderate to severe OSA (AHI≥15) in 3,551 participants of the Cleveland Family Study and two cohorts participating in the Sleep Heart Health Study. Among 647 African-Americans, rs11126184 in the pleckstrin (PLEK) gene was associated with OSA while rs7030789 in the lysophosphatidic acid receptor 1 (LPAR1) gene was associated with AHI using a chip-wide significance threshold of p-value<2×10−6. Among 2,904 individuals of European ancestry, rs1409986 in the prostaglandin E2 receptor (PTGER3) gene was significantly associated with OSA. Consistency of effects between rs7030789 and rs1409986 in LPAR1 and PTGER3 and apnea phenotypes were observed in independent clinic-based cohorts. Novel genetic loci for apnea phenotypes were identified through the use of customized gene chips and meta-analyses of cohort data with replication in clinic-based samples. The identified SNPs all lie in genes associated with inflammation suggesting inflammation may play a role in OSA pathogenesis.

Collaboration


Dive into the Sarah G. Buxbaum's collaboration.

Top Co-Authors

Avatar

Herman A. Taylor

Morehouse School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Susan Redline

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James G. Wilson

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Nalls

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel S. Evans

California Pacific Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ervin R. Fox

University of Mississippi Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge