Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah G. Mugford is active.

Publication


Featured researches published by Sarah G. Mugford.


BMC Plant Biology | 2012

Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat

Martin Trick; Nikolai M. Adamski; Sarah G. Mugford; Cong-Cong Jiang; Melanie Febrer; Cristobal Uauy

BackgroundNext generation sequencing (NGS) technologies are providing new ways to accelerate fine-mapping and gene isolation in many species. To date, the majority of these efforts have focused on diploid organisms with readily available whole genome sequence information. In this study, as a proof of concept, we tested the use of NGS for SNP discovery in tetraploid wheat lines differing for the previously cloned grain protein content (GPC) gene GPC-B1. Bulked segregant analysis (BSA) was used to define a subset of putative SNPs within the candidate gene region, which were then used to fine-map GPC-B1.ResultsWe used Illumina paired end technology to sequence mRNA (RNAseq) from near isogenic lines differing across a ~30-cM interval including the GPC-B1 locus. After discriminating for SNPs between the two homoeologous wheat genomes and additional quality filtering, we identified inter-varietal SNPs in wheat unigenes between the parental lines. The relative frequency of these SNPs was examined by RNAseq in two bulked samples made up of homozygous recombinant lines differing for their GPC phenotype. SNPs that were enriched at least 3-fold in the corresponding pool (6.5% of all SNPs) were further evaluated. Marker assays were designed for a subset of the enriched SNPs and mapped using DNA from individuals of each bulk. Thirty nine new SNP markers, corresponding to 67% of the validated SNPs, mapped across a 12.2-cM interval including GPC-B1. This translated to 1 SNP marker per 0.31 cM defining the GPC-B1 gene to within 13-18 genes in syntenic cereal genomes and to a 0.4 cM interval in wheat.ConclusionsThis study exemplifies the use of RNAseq for SNP discovery in polyploid species and supports the use of BSA as an effective way to target SNPs to specific genetic intervals to fine-map genes in unsequenced genomes.


The Plant Cell | 2009

Disruption of adenosine-5'-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites

Sarah G. Mugford; Naoko Yoshimoto; Michael Reichelt; Markus Wirtz; Lionel Hill; Sam T. Mugford; Yoshimi Nakazato; Masaaki Noji; Hideki Takahashi; Robert Kramell; Tamara Gigolashvili; Ulf-Ingo Flügge; Claus Wasternack; Jonathan Gershenzon; Ruediger Hell; Kazuki Saito; Stanislav Kopriva

Plants can metabolize sulfate by two pathways, which branch at the level of adenosine 5′-phosphosulfate (APS). APS can be reduced to sulfide and incorporated into Cys in the primary sulfate assimilation pathway or phosphorylated by APS kinase to 3′-phosphoadenosine 5′-phosphosulfate, which is the activated sulfate form for sulfation reactions. To assess to what extent APS kinase regulates accumulation of sulfated compounds, we analyzed the corresponding gene family in Arabidopsis thaliana. Analysis of T-DNA insertion knockout lines for each of the four isoforms did not reveal any phenotypical alterations. However, when all six combinations of double mutants were compared, the apk1 apk2 plants were significantly smaller than wild-type plants. The levels of glucosinolates, a major class of sulfated secondary metabolites, and the sulfated 12-hydroxyjasmonate were reduced approximately fivefold in apk1 apk2 plants. Although auxin levels were increased in the apk1 apk2 mutants, as is the case for most plants with compromised glucosinolate synthesis, typical high auxin phenotypes were not observed. The reduction in glucosinolates resulted in increased transcript levels for genes involved in glucosinolate biosynthesis and accumulation of desulfated precursors. It also led to great alterations in sulfur metabolism: the levels of sulfate and thiols increased in the apk1 apk2 plants. The data indicate that the APK1 and APK2 isoforms of APS kinase play a major role in the synthesis of secondary sulfated metabolites and are required for normal growth rates.


Plant Physiology | 2009

Functional Characterization of a Higher Plant Sphingolipid Δ4-Desaturase: Defining the Role of Sphingosine and Sphingosine-1-Phosphate in Arabidopsis

Louise V. Michaelson; Simone Zäuner; Jonathan E. Markham; Richard P. Haslam; Radhika Desikan; Sarah G. Mugford; Sandra Albrecht; Dirk Warnecke; Petra Sperling; Ernst Heinz; Johnathan A. Napier

The role of Δ4-unsaturated sphingolipid long-chain bases such as sphingosine was investigated in Arabidopsis (Arabidopsis thaliana). Identification and functional characterization of the sole Arabidopsis ortholog of the sphingolipid Δ4-desaturase was achieved by heterologous expression in Pichia pastoris. A P. pastoris mutant disrupted in the endogenous sphingolipid Δ4-desaturase gene was unable to synthesize glucosylceramides. Synthesis of glucosylceramides was restored by the expression of Arabidopsis gene At4g04930, and these sphingolipids were shown to contain Δ4-unsaturated long-chain bases, confirming that this open reading frame encodes the sphingolipid Δ4-desaturase. At4g04930 has a very restricted expression pattern, transcripts only being detected in pollen and floral tissues. Arabidopsis insertion mutants disrupted in the sphingolipid Δ4-desaturase At4g04930 were isolated and found to be phenotypically normal. Sphingolipidomic profiling of a T-DNA insertion mutant indicated the absence of Δ4-unsaturated sphingolipids in floral tissue, also resulting in the reduced accumulation of glucosylceramides. No difference in the response to drought or water loss was observed between wild-type plants and insertion mutants disrupted in the sphingolipid Δ4-desaturase At4g04930, nor was any difference observed in stomatal closure after treatment with abscisic acid. No differences in pollen viability between wild-type plants and insertion mutants were detected. Based on these observations, it seems unlikely that Δ4-unsaturated sphingolipids and their metabolites such as sphingosine-1-phosphate play a significant role in Arabidopsis growth and development. However, Δ4-unsaturated ceramides may play a previously unrecognized role in the channeling of substrates for the synthesis of glucosylceramides.


Plant Cell Reports | 2009

Plant sulfate assimilation genes: redundancy versus specialization.

Stanislav Kopriva; Sarah G. Mugford; Colette Matthewman; Anna Koprivova

Sulfur is an essential nutrient present in the amino acids cysteine and methionine, co-enzymes and vitamins. Plants and many microorganisms are able to utilize inorganic sulfate and assimilate it into these compounds. Sulfate assimilation in plants has been extensively studied because of the many functions of sulfur in plant metabolism and stress defense. The pathway is highly regulated in a demand-driven manner. A characteristic feature of this pathway is that most of its components are encoded by small multigene families. This may not be surprising, as several steps of sulfate assimilation occur in multiple cellular compartments, but the composition of the gene families is more complex than simply organellar versus cytosolic forms. Recently, several of these gene families have been investigated in a systematic manner utilizing Arabidopsis reverse genetics tools. In this review, we will assess how far the individual isoforms of sulfate assimilation enzymes possess specific functions and what level of genetic redundancy is retained. We will also compare the genomic organization of sulfate assimilation in the model plant Arabidopsis thaliana with other plant species to find common and species-specific features of the pathway.


The Plant Cell | 2012

The Arabidopsis Thylakoid ADP/ATP Carrier TAAC Has an Additional Role in Supplying Plastidic Phosphoadenosine 5′-Phosphosulfate to the Cytosol

Tamara Gigolashvili; Melanie Geier; Natallia Ashykhmina; Henning Frerigmann; Sabine Wulfert; Stephan Krueger; Sarah G. Mugford; Stanislav Kopriva; Ilka Haferkamp; Ulf-Ingo Flügge

This study shows that Arabidopsis thaliana TAAC is a plant PAPS transporter (PAPST1). Its functional characterization and the analysis of corresponding mutants demonstrate that TAAC/PAPST1 connects plastidic PAPS synthesis and cytosolic sulfation reactions. In contrast with the known animal PAPS antiporters that are members of the nucleotide-sugar transporter family, TAAC/PAPST1 belongs to the mitochondrial carrier family. 3′-Phosphoadenosine 5′-phosphosulfate (PAPS) is the high-energy sulfate donor for sulfation reactions. Plants produce some PAPS in the cytosol, but it is predominantly produced in plastids. Accordingly, PAPS has to be provided by plastids to serve as a substrate for sulfotransferase reactions in the cytosol and the Golgi apparatus. We present several lines of evidence that the recently described Arabidopsis thaliana thylakoid ADP/ATP carrier TAAC transports PAPS across the plastid envelope and thus fulfills an additional function of high physiological relevance. Transport studies using the recombinant protein revealed that it favors PAPS, 3′-phosphoadenosine 5′-phosphate, and ATP as substrates; thus, we named it PAPST1. The protein could be detected both in the plastid envelope membrane and in thylakoids, and it is present in plastids of autotrophic and heterotrophic tissues. TAAC/PAPST1 belongs to the mitochondrial carrier family in contrast with the known animal PAPS transporters, which are members of the nucleotide-sugar transporter family. The expression of the PAPST1 gene is regulated by the same MYB transcription factors also regulating the biosynthesis of sulfated secondary metabolites, glucosinolates. Molecular and physiological analyses of papst1 mutant plants indicate that PAPST1 is involved in several aspects of sulfur metabolism, including the biosynthesis of thiols, glucosinolates, and phytosulfokines.


Plant Journal | 2013

The Inhibitor of wax 1 locus (Iw1) prevents formation of β‐ and OH‐β‐diketones in wheat cuticular waxes and maps to a sub‐cM interval on chromosome arm 2BS

Nikolai M. Adamski; Maxwell S. Bush; James Simmonds; Adrian Turner; Sarah G. Mugford; Alan Jones; Kim Findlay; Nikolai Pedentchouk; Penny von Wettstein-Knowles; Cristobal Uauy

Glaucousness is described as the scattering effect of visible light from wax deposited on the cuticle of plant aerial organs. In wheat, two dominant genes lead to non-glaucous phenotypes: Inhibitor of wax 1 (Iw1) and Iw2. The molecular mechanisms and the exact extent (beyond visual assessment) by which these genes affect the composition and quantity of cuticular wax is unclear. To describe the Iw1 locus we used a genetic approach with detailed biochemical characterization of wax compounds. Using synteny and a large number of F2 gametes, Iw1 was fine-mapped to a sub-cM genetic interval on wheat chromosome arm 2BS, which includes a single collinear gene from the corresponding Brachypodium and rice physical maps. The major components of flag leaf and peduncle cuticular waxes included primary alcohols, β-diketones and n-alkanes. Small amounts of C19-C27 alkyl and methylalkylresorcinols that have not previously been described in wheat waxes were identified. Using six pairs of BC2 F3 near-isogenic lines, we show that Iw1 inhibits the formation of β- and hydroxy-β-diketones in the peduncle and flag leaf blade cuticles. This inhibitory effect is independent of genetic background or tissue, and is accompanied by minor but consistent increases in n-alkanes and C24 primary alcohols. No differences were found in cuticle thickness and carbon isotope discrimination in near-isogenic lines differing at Iw1.


Frontiers in Plant Science | 2012

Control of sulfur partitioning between primary and secondary metabolism in Arabidopsis.

Stanislav Kopriva; Sarah G. Mugford; Patrycja Baraniecka; Bok-Rye Lee; Colette Matthewman; Anna Koprivova

Sulfur is an essential nutrient for all organisms. Plants are able to take up inorganic sulfate and assimilate it into a range of bio-organic molecules either after reduction to sulfide or activation to 3′-phosphoadenosine 5′-phosphosulfate. While the regulation of the reductive part of sulfate assimilation and the synthesis of cysteine has been studied extensively in the past three decades, much less attention has been paid to the control of synthesis of sulfated compounds. Only recently the genes and enzymes activating sulfate and transferring it onto suitable acceptors have been investigated in detail with emphasis on understanding the diversity of the sulfotransferase gene family and the control of partitioning of sulfur between the two branches of sulfate assimilation. Here, the recent progress in our understanding of these processes will be summarized.


FEBS Letters | 2010

Adenosine-5′-phosphosulfate kinase is essential for Arabidopsis viability

Sarah G. Mugford; Colette Matthewman; Lionel Hill; Stanislav Kopriva

In Arabidopsis thaliana, adenosine‐5′‐phosphosulfate kinase (APK) provides activated sulfate for sulfation of secondary metabolites, including the glucosinolates. We have successfully isolated three of the four possible triple homozygous mutant combinations of this family. The APK1 isoform alone was sufficient to maintain WT levels of growth and development. Analysis of apk1 apk2 apk3 and apk1 apk3 apk4 mutants suggests that APK3 and APK4 are functionally redundant, despite being located in cytosol and plastids, respectively. We were, however, unable to isolate apk1 apk3 apk4 mutants, most probably because the apk1 apk3 apk4 triple mutant combination is pollen lethal. Therefore, we conclude that APS kinase is essential for plant reproduction and viability.


Archive | 2012

Partitioning of Sulfur Between Primary and Secondary Metabolism

Sarah G. Mugford; Colette Matthewman; Bok-Rye Lee; Ruslan Yatusevich; Naoko Yoshimoto; Markus Wirtz; Lionel Hill; Ruediger Hell; Hideki Takahashi; Kazuki Saito; Tamara Gigolashvili; Stanislav Kopriva

Sulfur is an essential nutrient for all organisms. Plants are able to take up inorganic sulfate and assimilate it into a range of bioorganic molecules, either after reduction to sulfide, or activation to 3′-phosphoadenosine 5′-phosphosulfate. While the regulation of the reductive part of sulfate assimilation and the synthesis of cysteine has been studied extensively in the past three decades, much less attention has been paid to the control of synthesis of sulfated compounds. Only recently have the genes and enzymes activating sulfate and transferring it onto suitable acceptors been investigated in detail with the emphasis on understanding the control of partitioning of sulfur between the two branches of sulfate assimilation. These investigations brought a range of interesting new findings, such as a common regulatory network of sulfate assimilation and glucosinolate synthesis, and identified new components of the pathway, e.g. PAPS transporter or the 2′(3′),5′-diphosphoadenosine phosphatase. Here the new findings are reviewed and put into context of primary and secondary sulfur metabolism.


Plant Journal | 2010

Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana

Ruslan Yatusevich; Sarah G. Mugford; Colette Matthewman; Tamara Gigolashvili; Henning Frerigmann; Sean Delaney; Anna Koprivova; Ulf-Ingo Flügge; Stanislav Kopriva

Collaboration


Dive into the Sarah G. Mugford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bok-Rye Lee

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge