Sarah H. Peterson
University of California, Santa Cruz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah H. Peterson.
PLOS ONE | 2012
Patrick W. Robinson; Daniel P. Costa; Daniel E. Crocker; Juan Pablo Gallo-Reynoso; Cory D. Champagne; Melinda A. Fowler; Chandra Goetsch; Kimberly T. Goetz; Jason L. Hassrick; Luis A. Hückstädt; Carey E. Kuhn; Jennifer L. Maresh; Sara M. Maxwell; Birgitte I. McDonald; Sarah H. Peterson; Samantha E. Simmons; Nicole M. Teutschel; Stella Villegas-Amtmann; Ken Yoda
The mesopelagic zone of the northeast Pacific Ocean is an important foraging habitat for many predators, yet few studies have addressed the factors driving basin-scale predator distributions or inter-annual variability in foraging and breeding success. Understanding these processes is critical to reveal how conditions at sea cascade to population-level effects. To begin addressing these challenging questions, we collected diving, tracking, foraging success, and natality data for 297 adult female northern elephant seal migrations from 2004 to 2010. During the longer post-molting migration, individual energy gain rates were significant predictors of pregnancy. At sea, seals focused their foraging effort along a narrow band corresponding to the boundary between the sub-arctic and sub-tropical gyres. In contrast to shallow-diving predators, elephant seals target the gyre-gyre boundary throughout the year rather than follow the southward winter migration of surface features, such as the Transition Zone Chlorophyll Front. We also assessed the impact of added transit costs by studying seals at a colony near the southern extent of the species’ range, 1,150 km to the south. A much larger proportion of seals foraged locally, implying plasticity in foraging strategies and possibly prey type. While these findings are derived from a single species, the results may provide insight to the foraging patterns of many other meso-pelagic predators in the northeast Pacific Ocean.
Proceedings of the Royal Society of London B: Biological Sciences | 2014
Taiki Adachi; Jennifer L. Maresh; Patrick W. Robinson; Sarah H. Peterson; Daniel P. Costa; Yasuhiko Naito; Yuuki Y. Watanabe; Akinori Takahashi
Foraging theory predicts that breath-hold divers adjust the time spent foraging at depth relative to the energetic cost of swimming, which varies with buoyancy (body density). However, the buoyancy of diving animals varies as a function of their body condition, and the effects of these changes on swimming costs and foraging behaviour have been poorly examined. A novel animal-borne accelerometer was developed that recorded the number of flipper strokes, which allowed us to monitor the number of strokes per metre swam (hereafter, referred to as strokes-per-metre) by female northern elephant seals over their months-long, oceanic foraging migrations. As negatively buoyant seals increased their fat stores and buoyancy, the strokes-per-metre increased slightly in the buoyancy-aided direction (descending), but decreased significantly in the buoyancy-hindered direction (ascending), with associated changes in swim speed and gliding duration. Overall, the round-trip strokes-per-metre decreased and reached a minimum value when seals achieved neutral buoyancy. Consistent with foraging theory, seals stayed longer at foraging depths when their round-trip strokes-per-metre was less. Therefore, neutrally buoyant divers gained an energetic advantage via reduced swimming costs, which resulted in an increase in time spent foraging at depth, suggesting a foraging benefit of being fat.
Proceedings of the Royal Society B: Biological Sciences | 2015
Sarah H. Peterson; Joshua T. Ackerman; Daniel P. Costa
Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200–1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ13C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation.
Rapid Communications in Mass Spectrometry | 2016
Roxanne S. Beltran; Sarah H. Peterson; Elizabeth A. McHuron; Colleen Reichmuth; Luis A. Hückstädt; Daniel P. Costa
RATIONALE Mixing models are a common method for quantifying the contribution of prey sources to the diet of an individual using stable isotope analysis; however, these models rely upon a known trophic discrimination factor (hereafter, TDF) that results from fractionation between prey and animal tissues. Quantifying TDFs in captive animals is ideal, because diet is controlled and the proportional contributions and isotopic values of all prey items are known. METHODS To calculate TDFs for the Hawaiian monk seal, northern elephant seal, bearded seal, ringed seal, spotted seal, harbor seal, and California sea lion, we obtained whiskers, serum, plasma, red blood cells, and prey items from nine captive individuals. We obtained δ(13) C and δ(15) N values using continuous-flow isotope-ratio mass spectrometry. The average δ(13) C and δ(15) N values from bulk and lipid-corrected prey from the diet were subtracted from the δ(13) C and δ(15) N values of each blood and whisker sample to calculate tissue-specific TDFs for each individual (∆(13) C or ∆(15) N). RESULTS The ∆(13) C values ranged from +1.7 to +3.2‰ (bulk prey) and from +0.8 to +1.9‰ (lipid-corrected prey) for the various blood components, and from +3.9 to +4.6‰ (bulk prey) or +2.6 to +3.9‰ (lipid-corrected prey) for whiskers. The ∆(15) N values ranged from +2.2 to +4.3‰ for blood components and from +2.6 to +4.0‰ for whiskers. The TDFs tended to group by tissue, with whiskers having greater ∆(13) C values than blood components. In contrast, the ∆(15) N values were greater in serum and plasma than in red blood cells and whiskers. CONCLUSIONS By providing the first TDF values for five seal species (family Phocidae) and one otariid species (family Otariidae), our study facilitates more accurate mixing models for these species. These values are particularly important for critically endangered Hawaiian monk seals and the three Arctic seal species (bearded, ringed, and spotted) that are faced with a rapidly changing environment.
PLOS ONE | 2014
Sarah H. Peterson; Jason L. Hassrick; Anne Lafontaine; Jean-Pierre Thomé; Daniel E. Crocker; Cathy Debier; Daniel P. Costa
Persistent organic pollutants, including polychlorinated biphenyls (PCBs), are widely distributed and detectable far from anthropogenic sources. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometers to forage in coastal and open-ocean regions of the northeast Pacific Ocean and then return to land where they fast while breeding and molting. Our study examined potential effects of age, adipose percent, and the difference between the breeding and molting fasts on PCB concentrations and congener profiles in blubber and serum of northern elephant seal females. Between 2005 and 2007, we sampled blubber and blood from 58 seals before and after a foraging trip, which were then analyzed for PCBs. Age did not significantly affect total PCB concentrations; however, the proportion of PCB congeners with different numbers of chlorine atoms was significantly affected by age, especially in the outer blubber. Younger adult females had a significantly greater proportion of low-chlorinated PCBs (tri-, tetra-, and penta-CBs) than older females, with the opposite trend observed for hepta-CBs, indicating that an age-associated process such as parity (birth) may significantly affect congener profiles. The percent of adipose tissue had a significant relationship with inner blubber PCB concentrations, with the highest mean concentrations observed at the end of the molting fast. These results highlight the importance of sampling across the entire blubber layer when assessing contaminant levels in phocid seals and taking into account the adipose stores and reproductive status of an animal when conducting contaminant research.
Archives of Environmental Contamination and Toxicology | 2016
Sarah H. Peterson; Elizabeth A. McHuron; Stephanie N. Kennedy; Joshua T. Ackerman; Lorrie D. Rea; J. Margaret Castellini; Todd M. O’Hara; Daniel P. Costa
Mercury (Hg) biomonitoring of pinnipeds increasingly utilizes nonlethally collected tissues such as hair and blood. The relationship between total Hg concentrations ([THg]) in these tissues is not well understood for marine mammals, but it can be important for interpretation of tissue concentrations with respect to ecotoxicology and biomonitoring. We examined [THg] in blood and hair in multiple age classes of four pinniped species. For each species, we used paired blood and hair samples to quantify the ability of [THg] in hair to predict [THg] in blood at the time of sampling and examined the influence of varying ontogenetic phases and life history of the sampled animals. Overall, we found that the relationship between [THg] in hair and blood was affected by factors including age class, weaning status, growth, and the time difference between hair growth and sample collection. Hair [THg] was moderately to strongly predictive of current blood [THg] for adult female Steller sea lions (Eumetopias jubatus), adult female California sea lions (Zalophus californianus), and adult harbor seals (Phoca vitulina), whereas hair [THg] was poorly predictive or not predictive (different times of year) of blood [THg] for adult northern elephant seals (Mirounga angustirostris). Within species, except for very young pups, hair [THg] was a weaker predictor of blood [THg] for prereproductive animals than for adults likely due to growth, variability in foraging behavior, and transitions between ontogenetic phases. Our results indicate that the relationship between hair [THg] and blood [THg] in pinnipeds is variable and that ontogenetic phase and life history should be considered when interpreting [THg] in these tissues.
Science of The Total Environment | 2015
Sarah H. Peterson; Michael G. Peterson; Cathy Debier; Adrian Covaci; Alin C. Dirtu; Govindan Malarvannan; Daniel E. Crocker; Lisa K. Schwarz; Daniel P. Costa
As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N=24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N=14) and after (N=15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑DDTs and ∑PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑DDT and ∑PBDEs were highly correlated in blubber and serum. While ∑PCBs were highly correlated with ∑DDTs and ∑PBDEs in blubber and serum for males, ∑PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑DDTs, ∑PBDEs, MeO-BDE 47, as well as the ratio of ∑DDTs to ∑PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑DDTs and ∑PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in (13)C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in deep ocean food webs.
Environmental Toxicology and Chemistry | 2016
Sarah H. Peterson; Joshua T. Ackerman; Daniel P. Costa
Mercury (Hg) biomonitoring and toxicological risk assessments for marine mammals commonly sample different tissues, making comparisons with toxicity benchmarks and among species and regions difficult. Few studies have examined how life-history events, such as fasting, influence the relationship between total Hg (THg) concentrations in different tissues. The authors evaluated the relationships between THg concentrations in blood, muscle, and hair of female and male northern elephant seals (Mirounga angustirostris) at the start and end of the breeding and molting fasts. The relationships between tissues varied among tissue pairs and differed by sampling period and sex. Blood and muscle were generally related at all time periods; however, hair, an inert tissue, did not strongly represent the metabolically active tissues (blood and muscle) at all times of year. The strongest relationships between THg concentrations in hair and those in blood or muscle were observed during periods of active hair growth (end of the molting period) or during time periods when internal body conditions were similar to those when the hair was grown (end of the breeding fast). The results indicate that THg concentrations in blood or muscle can be translated to the other tissue type using the equations developed but that THg concentrations in hair were generally a poor index of internal THg concentrations except during the end of fasting periods. Environ Toxicol Chem 2016;35:2103-2110.
PLOS ONE | 2015
Lisa K. Schwarz; Stella Villegas-Amtmann; Roxanne S. Beltran; Daniel P. Costa; Chandra Goetsch; Luis A. Hückstädt; Jennifer L. Maresh; Sarah H. Peterson
Fat mass and body condition are important metrics in bioenergetics and physiological studies. They can also link foraging success with demographic rates, making them key components of models that predict population-level outcomes of environmental change. Therefore, it is important to incorporate uncertainty in physiological indicators if results will lead to species management decisions. Maternal fat mass in elephant seals (Mirounga spp) can predict reproductive rate and pup survival, but no one has quantified or identified the sources of uncertainty for the two fat mass estimation techniques (labeled-water and truncated cones). The current cones method can provide estimates of proportion adipose tissue in adult females and proportion fat of juveniles in northern elephant seals (M. angustirostris) comparable to labeled-water methods, but it does not work for all cases or species. We reviewed components and assumptions of the technique via measurements of seven early-molt and seven late-molt adult females. We show that seals are elliptical on land, rather than the assumed circular shape, and skin may account for a high proportion of what is often defined as blubber. Also, blubber extends past the neck-to-pelvis region, and comparisons of new and old ultrasound instrumentation indicate previous measurements of sculp thickness may be biased low. Accounting for such differences, and incorporating new measurements of blubber density and proportion of fat in blubber, we propose a modified cones method that can isolate blubber from non-blubber adipose tissue and separate fat into skin, blubber, and core compartments. Lastly, we found that adipose tissue and fat estimates using tritiated water may be biased high during the early molt. Both the tritiated water and modified cones methods had high, but reducible, uncertainty. The improved cones method for estimating body condition allows for more accurate quantification of the various tissue masses and may also be transferrable to other species.
Waterbirds | 2016
Jill D. Bluso-Demers; Joshua T. Ackerman; Sarah H. Peterson
Abstract. The highly urbanized San Francisco Bay Estuary, California, USA, is currently undergoing large-scale habitat restoration, and several thousand hectares of former salt evaporation ponds are being converted to tidal marsh. To identify potential effects of this habitat restoration on breeding waterbirds, habitat selection of radiotagged Forsters Terns (Sterna forsteri) was examined at multiple spatial scales during the pre-breeding and breeding seasons of 2005 and 2006. At each spatial scale, habitat selection ratios were calculated by season, year, and sex. Forsters Terns selected salt pond habitats at most spatial scales and demonstrated the importance of salt ponds for foraging and roosting. Salinity influenced the types of salt pond habitats that were selected. Specifically, Forsters Terns strongly selected lower salinity salt ponds (0.5–30 g/L) and generally avoided higher salinity salt ponds (≥ 31 g/L). Forsters Terns typically used tidal marsh and managed marsh habitats in proportion to their availability, avoided upland and tidal flat habitats, and strongly avoided open bay habitats. Salt ponds provide important habitat for breeding waterbirds, and restoration efforts to convert former salt ponds to tidal marsh may reduce the availability of preferred breeding and foraging areas.