Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Hamylton is active.

Publication


Featured researches published by Sarah Hamylton.


International Journal of Remote Sensing | 2013

Filling the ‘white ribbon’ – a multisource seamless digital elevation model for Lizard Island, northern Great Barrier Reef

Javier X Leon; Stuart R. Phinn; Sarah Hamylton; Megan I. Saunders

Hydrographers have traditionally referred to the nearshore area as the ‘white ribbon’ area due to the challenges associated with the collection of elevation data (elevation hereafter refers to both topography and bathymetry) in this highly dynamic transitional zone between terrestrial and marine environments. Accordingly, available information in this zone is typically characterized by a range of data sets from disparate sources. In this article, we propose a framework to fill the white ribbon area of a coral reef system by integrating multiple elevation data sets acquired by a suite of remote-sensing technologies into a seamless digital elevation model (DEM). A range of data sets are integrated, including field-collected global positioning system (GPS) elevation points, topographic and bathymetric light detecting and ranging (lidar), single and multibeam echosoundings, nautical charts, and bathymetry derived from optical remote-sensing imagery. The proposed framework ranks data reliability internally, thereby avoiding the requirements to quantify absolute error and results in a high-resolution, seamless product. Nested within this approach is an effective spatially explicit technique for improving the accuracy of bathymetry estimates derived empirically from optical satellite imagery through modelling the spatial structure of residuals. The approach was applied to data collected on and around Lizard Island in northern Australia. Collectively, the framework holds promise for filling the white ribbon zone in coastal areas characterized by similar data availability scenarios.


Remote Sensing | 2015

Derivation of High-Resolution Bathymetry from Multispectral Satellite Imagery: A Comparison of Empirical and Optimisation Methods through Geographical Error Analysis

Sarah Hamylton; John D. Hedley; Robin J. Beaman

The high importance of bathymetric character for many processes on reefs means that high-resolution bathymetric models are commonly needed by marine scientists and coastal managers. Empirical and optimisation methods provide two approaches for deriving bathymetry from multispectral satellite imagery, which have been refined and widely applied to coral reefs over the last decade. This paper compares these two approaches by means of a geographical error analysis for two sites on the Great Barrier Reef: Lizard Island (a continental island fringing reef) and Sykes Reef (a planar platform reef). The geographical distributions of model residuals (i.e., the difference between modelled and measured water depths) are mapped, and their spatial autocorrelation is calculated as a basis for comparing the performance of the bathymetric models. Comparisons reveal consistent geographical properties of errors arising from both models, including the tendency for positive residuals (i.e., an under-prediction of depth) in shallower areas and negative residuals in deeper areas (i.e., an over-prediction of depth) and the presence of spatial autocorrelation in model errors. A spatial error model is used to generate more reliable estimates of bathymetry by quantifying the spatial structure (autocorrelation) of model error and incorporating this into an improved regression model. Spatial error models improve bathymetric estimates derived from both methods.


Journal of remote sensing | 2011

Estimating the coverage of coral reef benthic communities from airborne hyperspectral remote sensing data: multiple discriminant function analysis and linear spectral unmixing

Sarah Hamylton

A staged approach for the application of linear spectral unmixing techniques to airborne hyperspectral remote sensing data of reef communities of the Al Wajh Barrier, Red Sea, is presented. Quantification of the percentage composition of four different reef components (live coral, dead coral, macroalgae and carbonate sand) contained within the ground sampling distance associated with an individual pixel is demonstrated. In the first stage, multiple discriminant function analysis is applied to spectra collected in situ to define an optimal subset combination of derivative and raw image wavebands for discriminating reef benthos. In the second phase, unmixing is applied to a similarly reduced subset of pre-processed image data to accurately determine the relative abundance of the reef benthos (R 2 > 0.7 for all four components). The result of a phased approach is an increased signal-to-noise ratio for solution of the linear functions and reduction of processing burdens associated with image unmixing.


International Journal of Remote Sensing | 2013

The use of remote sensing to scale up measures of carbonate production on reef systems: a comparison of hydrochemical and census-based estimation methods

Sarah Hamylton; Jacob Silverman; Emily C. Shaw

The present study uses remote-sensing imagery to estimate carbonate production of the complete One Tree Island reef system, Great Barrier Reef, using hydrochemical (alkalinity reduction) and census-based (budgetary) methods. For five sites representing different benthic cover types across the reef system, carbonate production is determined using hydrochemical techniques that incubate substrates in a local aquarium and measure total alkalinity, total ammonia nitrogen, and total oxidized nitrogen. Local estimates are scaled up to the reef-system scale using a WorldView-2 satellite image, which is ground truthed against a field data set of 350 spatially referenced records of benthic assemblage. Annual total reef system carbonate production based on hydrochemical and census-based methods is estimated at 40,335 and 38,998 tonnes of calcium carbonate (CaCO3), respectively. The minimal difference (0.3%) between these estimates is attributed to under representation of small carbonate producers, such as benthic foraminifera, which are difficult to incorporate in the underwater video methodology employed to populate census budgets. This finding demonstrates the utility of remote sensing for upscaling local measures of carbonate production across reef systems accurately and consistently in spite of the use of different initial estimation methods.


Remote Sensing | 2012

A Geospatial Appraisal of Ecological and Geomorphic Change on Diego Garcia Atoll, Chagos Islands (British Indian OceanTerritory)

Sarah Hamylton; Holly K. East

This study compiled a wide range of modern and historic geospatial datasets to examine ecological and geomorphic change at Diego Garcia Atoll across a 38-year period (1967–2005). This remarkable collection of spatially referenced information offered an opportunity to advance our understanding of the nature and extent of environmental change that has taken place with the construction of the military airbase at Diego Garcia. Changes assessed included movements of the lagoon rim shorelines, changes in the terrestrial vegetation on the lagoon rim and amendments to the bathymetry of the lagoon basin through dredging activities. Data compiled included detailed shoreline and vegetation maps produced as part of the H.M.S. Vidal Indian Ocean Expedition (1967), three Ikonos satellite images acquired in 2005 that collectively covered the complete Atoll area, a ground truthing field dataset collected in the northern section of the lagoon for the purpose of seafloor mapping (2005), observational evidence of shoreline erosion including photographs and descriptions of seawater inundations and bathymetric soundings from five independent surveys of the lagoon floor (1967, 1985, 1987, 1988 and 1997). Results indicated that much of the change along the lagoon rim is associated with the expansion of the inner lagoon shoreline as a result of the construction of the military airbase, with an estimated increase in land area of 3.01 km2 in this portion of the atoll rim. Comparisons of 69 rim width transects measured from 1967 and 2005 indicated that shorelines are both eroding (26 transects) and accreting (43 transects). Within a total vegetated area of 24 km2, there was a notable transition from Cocos Woodland to Broadleaf Woodland for a land area of 5.6 km2. From the hydrographic surveys, it was estimated that approximately 0.55 km3 of carbonate sediment material has been removed from the northwest quadrant of the lagoon, particularly in the vicinity of the Main Passage. As no previous record of benthic character exists, a complete benthic habitat map of the atoll was derived through classification of the three IKONOS satellite images. Management implications arising from this overall appraisal of geomorphic and ecological change at Diego Garcia included the need for ongoing monitoring of shoreline change at a representative set of sites around the atoll rim, monitoring of the water flow regime through the northern channels between the open ocean and the lagoon basin and an ongoing mapping campaign to record periodic changes in the character of the benthic surface ecology.


Marine Environmental Research | 2015

Uniform functional structure across spatial scales in an intertidal benthic assemblage

R. S. K. Barnes; Sarah Hamylton

To investigate the causes of the remarkable similarity of emergent assemblage properties that has been demonstrated across disparate intertidal seagrass sites and assemblages, this study examined whether their emergent functional-group metrics are scale related by testing the null hypothesis that functional diversity and the suite of dominant functional groups in seagrass-associated macrofauna are robust structural features of such assemblages and do not vary spatially across nested scales within a 0.4 ha area. This was carried out via a lattice of 64 spatially referenced stations. Although densities of individual components were patchily dispersed across the locality, rank orders of importance of the 14 functional groups present, their overall functional diversity and evenness, and the proportions of the total individuals contained within each showed, in contrast, statistically significant spatial uniformity, even at areal scales <2 m(2). Analysis of the proportional importance of the functional groups in their geospatial context also revealed weaker than expected levels of spatial autocorrelation, and then only at the smaller scales and amongst the most dominant groups, and only a small number of negative correlations occurred between the proportional importances of the individual groups. In effect, such patterning was a surface veneer overlying remarkable stability of assemblage functional composition across all spatial scales. Although assemblage species composition is known to be homogeneous in some soft-sediment marine systems over equivalent scales, this combination of patchy individual components yet basically constant functional-group structure seems as yet unreported.


International Journal of Remote Sensing | 2011

An evaluation of waveband pairs for water column correction using band ratio methods for seabed mapping in the Seychelles

Sarah Hamylton

The differential attenuation of visible light (wavelength 400–700 nm) as it travels through the water column confounds the interpretation of remotely sensed imagery acquired over the sea floor. This can be addressed using depth-invariant processing techniques that ratio the radiance values of two wavebands. An evaluation of the performance of different waveband pairs for creating depth-invariant indices of the sea floor is presented. Twenty-eight different band pairs extracted from multispectral Compact Airborne Spectrographic Imager (CASI) data are assessed for the creation of depth-invariant indices over the reef profile of Alphonse Atoll in the Seychelles (water depth 0–30 m). Findings indicate that, for optimal performance, bands selected for depth-invariant processing must be at least 90 nm apart to achieve an optimal ratio of attenuation coefficients within the water column. This optimal ratio must also lie at a central point of the visible spectrum at which longer wavelength bands are not fully attenuated, while shorter wavelength bands exhibit some attenuation over a depth range that coincides with the features of interest in the water column.


International Journal of Geographical Information Science | 2012

A comparison of spatially explicit and classic regression modelling of live coral cover using hyperspectral remote-sensing data in the Al Wajh lagoon, Red Sea

Sarah Hamylton

Live coral is a key component of the Al Wajh marine reserve in the Red Sea. The management of this reserve is dependent on a sound understanding of the existing spatial distribution of live coral cover and the environmental factors influencing live coral at the landscape scale. This study uses remote-sensing techniques to develop ordinary least squares and spatially lagged autoregressive explanatory models of the distribution of live coral cover inside the Al Wajh lagoon, Saudi Arabia. Live coral was modelled as a response to environmental controls such as water depth, the concentration of suspended sediment in the water column and exposure to incident waves. Airborne hyperspectral data were used to derive information on live coral cover as a response (dependent) variable at the landscape scale using linear spectral unmixing. Environmental controls (explanatory variables) were derived from a physics-based inversion of the remote-sensing dataset and validated against field-collected data. For spatial regression, cases referred to geographical locations that were explicitly drawn on in the modelling process to make use of the spatially dependent nature of coral cover controls. The transition from the ordinary least squares model to the spatially lagged model was accompanied by a marked growth in explanatory power (R 2 = 0.26 to 0.76). The theoretical implication that follows is that neighbourhood context interactions play an important role in determining live coral cover. This provides a persuasive case for building geographical considerations into studies of coral distribution.


PLOS ONE | 2014

Will Coral Islands maintain their growth over the next century? A deterministic model of sediment availability at Lady Elliot Island, Great Barrier Reef.

Sarah Hamylton

A geomorphic assessment of reef system calcification is conducted for past (3200 Ka to present), present and future (2010–2100) time periods. Reef platform sediment production is estimated at 569 m3 yr−1 using rate laws that express gross community carbonate production as a function of seawater aragonite saturation, community composition and rugosity and incorporating estimates of carbonate removal from the reef system. Key carbonate producers including hard coral, crustose coralline algae and Halimeda are mapped accurately (mean R2 = 0.81). Community net production estimates correspond closely to independent census-based estimates made in-situ (R2 = 0.86). Reef-scale outputs are compared with historic rates of production generated from (i) radiocarbon evidence of island deposition initiation around 3200 years ago, and (ii) island volume calculated from a high resolution island digital elevation model. Contemporary carbonate production rates appear to be remarkably similar to historical values of 573 m3 yr−1. Anticipated future seawater chemistry parameters associated with an RCP8.5 emissions scenario are employed to model rates of net community calcification for the period 2000–2100 on the basis of an inorganic aragonite precipitation law, under the assumption of constant benthic community character. Simulations indicate that carbonate production will decrease linearly to a level of 118 m3 yr−1 by 2100 and that by 2150 aragonite saturation levels may no longer support the positive budgetary status necessary to sustain island accretion. Novel aspects of this assessment include the development of rate law parameters to realistically represent the variable composition of coral reef benthic carbonate producers, incorporation of three dimensional rugosity of the entire reef platform and the coupling of model outputs with both historical radiocarbon dating evidence and forward hydrochemical projections to conduct an assessment of island evolution through time. By combining several lines of evidence in a deterministic manner, an assessment of changes in carbonate production is carried out that has tangible geomorphic implications for sediment availability and associated island evolution.


Journal of Coastal Research | 2016

GIS-based modelling of vulnerability of coastal wetland ecosystems to environmental changes: Comerong Island, southeastern Australia

Ali Kareem Mohammed Al-Nasrawi; Brian G. Jones; Sarah Hamylton

ABSTRACT Al-Nasrawi, A.K.M.; Jones, B.G., and Hamylton, S. M., 2016. GIS-based modelling of vulnerability of coastal wetland ecosystems to environmental changes: Comerong Island, southeastern Australia. In: Vila-Concejo, A.; Bruce, E.; Kennedy, D.M., and McCarroll, R.J. (eds.), Proceedings of the 14th International Coastal Symposium (Sydney, Australia). Journal of Coastal Research, Special Issue, No. 75, pp. 33–37. Coconut Creek (Florida), ISSN 0749-0208. Sustainable management of coastal zones has become a complicated issue. The majority of the human population lives along the coast, where their activities, together with a range of environmental changes, have altered the natural ecosystem processes and caused changes in coastal wetlands. To ensure sustainable use of coastal resources, a comprehensive set of modelling tools can help managers to make decisions. This study uses Comerong Island (southeastern NSW, Australia) as a case study to demonstrate the importance of modelling modifications to environmental change. Several data-based modelling approaches are employed to explore how human activities have altered this estuarine island setting over the last sixty years (1949 – 2014). Multi-temporal changes in land cover, shorelines and sediment delivery are estimated from remote sensing data, GIS analysis, and laboratory tests on water and sediment samples (grain size, X-ray diffraction and loss on ignition and water analysis). Results show there are significant changes to the areal extents and elevation of mangroves, saltmarshes and shorelines in the wetlands on Comerong Island over the time period of analysis, including northern accretion (0.4 km2), eastern, middle and southern erosion (0.7 km2) of the island. The implementation of modelling using GIS tools, water and sediment samples to monitor ecosystem processes, such as sediment transport and erosion/deposition, will allow resource managers to make more informed decisions by evaluating the potential consequences of the existing situation.

Collaboration


Dive into the Sarah Hamylton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Spencer

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian G. Jones

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar

Javier X Leon

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge