Sarah Hull
Moorfields Eye Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah Hull.
Cell Stem Cell | 2016
David A. Parfitt; Amelia Lane; Conor Ramsden; Amanda Jayne F Carr; Peter M.G. Munro; Katarina Jovanovic; Nele Schwarz; Naheed Kanuga; Manickam N. Muthiah; Sarah Hull; Jean-Marc Gallo; Lyndon da Cruz; Anthony T. Moore; Alison J. Hardcastle; Peter J. Coffey; Michael E. Cheetham
Summary Leber congenital amaurosis (LCA) is an inherited retinal dystrophy that causes childhood blindness. Photoreceptors are especially sensitive to an intronic mutation in the cilia-related gene CEP290, which causes missplicing and premature termination, but the basis of this sensitivity is unclear. Here, we generated differentiated photoreceptors in three-dimensional optic cups and retinal pigment epithelium (RPE) from iPSCs with this common CEP290 mutation to investigate disease mechanisms and evaluate candidate therapies. iPSCs differentiated normally into RPE and optic cups, despite abnormal CEP290 splicing and cilia defects. The highest levels of aberrant splicing and cilia defects were observed in optic cups, explaining the retinal-specific manifestation of this CEP290 mutation. Treating optic cups with an antisense morpholino effectively blocked aberrant splicing and restored expression of full-length CEP290, restoring normal cilia-based protein trafficking. These results provide a mechanistic understanding of the retina-specific phenotypes in CEP290 LCA patients and potential strategies for therapeutic intervention.
Journal of Medical Genetics | 2014
Alexandros Onoufriadis; Amelia Shoemark; Mustafa M. Munye; Chela James; Miriam Schmidts; Mitali Patel; Elisabeth Rosser; Chiara Bacchelli; Philip L. Beales; Peter J. Scambler; Stephen L. Hart; Jeannette E Danke-Roelse; John J Sloper; Sarah Hull; Claire Hogg; Richard D. Emes; Gerard Pals; Anthony T. Moore; Eddie M. K. Chung; Hannah M. Mitchison
Background Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous ciliopathy disorder affecting cilia and sperm motility. A range of ultrastructural defects of the axoneme underlie the disease, which is characterised by chronic respiratory symptoms and obstructive lung disease, infertility and body axis laterality defects. We applied a next-generation sequencing approach to identify the gene responsible for this phenotype in two consanguineous families. Methods and results Data from whole-exome sequencing in a consanguineous Turkish family, and whole-genome sequencing in the obligate carrier parents of a consanguineous Pakistani family was combined to identify homozygous loss-of-function mutations in ARMC4, segregating in all five affected individuals from both families. Both families carried nonsense mutations within the highly conserved armadillo repeat region of ARMC4: c.2675C>A; pSer892* and c.1972G>T; p.Glu658*. A deficiency of ARMC4 protein was seen in patients respiratory cilia accompanied by loss of the distal outer dynein arm motors responsible for generating ciliary beating, giving rise to cilia immotility. ARMC4 gene expression is upregulated during ciliogenesis, and we found a predicted interaction with the outer dynein arm protein DNAI2, mutations in which also cause PCD. Conclusions We report the first use of whole-genome sequencing to identify gene mutations causing PCD. Loss-of-function mutations in ARMC4 cause PCD with situs inversus and cilia immotility, associated with a loss of the distal outer (but not inner) dynein arms. This addition of ARMC4 to the list of genes associated with ciliary outer dynein arm defects expands our understanding of the complexities of PCD genetics.
American Journal of Human Genetics | 2016
Gavin Arno; Smriti Agrawal; Aiden Eblimit; James Bellingham; Mingchu Xu; F Wang; Christina Chakarova; David A. Parfitt; Amelia Lane; Thomas Burgoyne; Sarah Hull; Keren Carss; Alessia Fiorentino; Mj Hayes; Peter M.G. Munro; R Nicols; Nikolas Pontikos; Graham E. Holder; Ukirdc; C Asomugha; Fl Raymond; Anthony T. Moore; Plagnol; Michel Michaelides; Alison J. Hardcastle; Yixin Li; C Cukras; Andrew R. Webster; Michael E. Cheetham; Rui Chen
Retinitis pigmentosa (RP) is the most frequent form of inherited retinal dystrophy. RP is genetically heterogeneous and the genes identified to date encode proteins involved in a wide range of functional pathways, including photoreceptor development, phototransduction, the retinoid cycle, cilia, and outer segment development. Here we report the identification of biallelic mutations in Receptor Expression Enhancer Protein 6 (REEP6) in seven individuals with autosomal-recessive RP from five unrelated families. REEP6 is a member of the REEP/Yop1 family of proteins that influence the structure of the endoplasmic reticulum but is relatively unstudied. The six variants identified include three frameshift variants, two missense variants, and a genomic rearrangement that disrupts exon 1. Human 3D organoid optic cups were used to investigate REEP6 expression and confirmed the expression of a retina-specific isoform REEP6.1, which is specifically affected by one of the frameshift mutations. Expression of the two missense variants (c.383C>T [p.Pro128Leu] and c.404T>C [p.Leu135Pro]) and the REEP6.1 frameshift mutant in cultured cells suggest that these changes destabilize the protein. Furthermore, CRISPR-Cas9-mediated gene editing was used to produce Reep6 knock-in mice with the p.Leu135Pro RP-associated variant identified in one RP-affected individual. The homozygous knock-in mice mimic the clinical phenotypes of RP, including progressive photoreceptor degeneration and dysfunction of the rod photoreceptors. Therefore, our study implicates REEP6 in retinal homeostasis and highlights a pathway previously uncharacterized in retinal dystrophy.
Journal of Medical Genetics | 2015
Robert B. Hufnagel; Gavin Arno; Nichole D. Hein; Joshua Hersheson; Megana K. Prasad; Y Anderson; Laura A. Krueger; Louise Gregory; Corinne Stoetzel; Tj Jaworek; Sarah Hull; Abi Li; Plagnol; Cm Willen; Tm Morgan; Cynthia A. Prows; Rs Hegde; Saima Riazuddin; Ga Grabowski; Rudy J. Richardson; K Dieterich; Taosheng Huang; Tamas Revesz; Juan Pedro Martinez-Barbera; Robert A. Sisk; C Jefferies; Henry Houlden; Mehul T. Dattani; John K. Fink; Hélène Dollfus
Background Oliver–McFarlane syndrome is characterised by trichomegaly, congenital hypopituitarism and retinal degeneration with choroidal atrophy. Laurence–Moon syndrome presents similarly, though with progressive spinocerebellar ataxia and spastic paraplegia and without trichomegaly. Both recessively inherited disorders have no known genetic cause. Methods Whole-exome sequencing was performed to identify the genetic causes of these disorders. Mutations were functionally validated in zebrafish pnpla6 morphants. Embryonic expression was evaluated via in situ hybridisation in human embryonic sections. Human neurohistopathology was performed to characterise cerebellar degeneration. Enzymatic activities were measured in patient-derived fibroblast cell lines. Results Eight mutations in six families with Oliver–McFarlane or Laurence–Moon syndrome were identified in the PNPLA6 gene, which encodes neuropathy target esterase (NTE). PNPLA6 expression was found in the developing human eye, pituitary and brain. In zebrafish, the pnpla6 curly-tailed morphant phenotype was fully rescued by wild-type human PNPLA6 mRNA and not by mutation-harbouring mRNAs. NTE enzymatic activity was significantly reduced in fibroblast cells derived from individuals with Oliver–McFarlane syndrome. Intriguingly, adult brain histology from a patient with highly overlapping features of Oliver–McFarlane and Laurence–Moon syndromes revealed extensive cerebellar degeneration and atrophy. Conclusions Previously, PNPLA6 mutations have been associated with spastic paraplegia type 39, Gordon–Holmes syndrome and Boucher–Neuhäuser syndromes. Discovery of these additional PNPLA6-opathies further elucidates a spectrum of neurodevelopmental and neurodegenerative disorders associated with NTE impairment and suggests a unifying mechanism with diagnostic and prognostic importance.
American Journal of Human Genetics | 2015
Sophie Scheidecker; Christelle Etard; Laurence Haren; Corinne Stoetzel; Sarah Hull; Gavin Arno; Vincent Plagnol; Séverine Drunat; Sandrine Passemard; Annick Toutain; Cathy Obringer; Mériam Koob; Véronique Geoffroy; Vincent Marion; Uwe Strähle; Pia Ostergaard; Alain Verloes; Andreas Merdes; Anthony T. Moore; Hélène Dollfus
We have identified TUBGCP4 variants in individuals with autosomal-recessive microcephaly and chorioretinopathy. Whole-exome sequencing performed on one family with two affected siblings and independently on another family with one affected child revealed compound-heterozygous mutations in TUBGCP4. Subsequent Sanger sequencing was performed on a panel of individuals from 12 French families affected by microcephaly and ophthalmic manifestations, and one other individual was identified with compound-heterozygous mutations in TUBGCP4. One synonymous variant was common to all three families and was shown to induce exon skipping; the other mutations were frameshift mutations and a deletion. TUBGCP4 encodes γ-tubulin complex protein 4, a component belonging to the γ-tubulin ring complex (γ-TuRC) and known to regulate the nucleation and organization of microtubules. Functional analysis of individual fibroblasts disclosed reduced levels of the γ-TuRC, altered nucleation and organization of microtubules, abnormal nuclear shape, and aneuploidy. Moreover, zebrafish treated with morpholinos against tubgcp4 were found to have reduced head volume and eye developmental anomalies with chorioretinal dysplasia. In summary, the identification of TUBGCP4 mutations in individuals with microcephaly and a spectrum of anomalies in eye development, particularly photoreceptor anomalies, provides evidence of an important role for the γ-TuRC in brain and eye development.
Investigative Ophthalmology & Visual Science | 2015
Gavin Arno; Sarah Hull; A.G. Robson; Graham E. Holder; Michael E. Cheetham; Andrew R. Webster; Plagnol; Anthony T. Moore
PURPOSE We present a detailed clinical and molecular study of four patients from two consanguineous families with a similar childhood-onset retinal dystrophy resulting from novel homozygous nonsense mutations in RBP3. METHODS Four children with mutations in RBP3 encoding interphotoreceptor binding protein (IRBP) were ascertained by whole exome sequencing and subsequent direct Sanger sequencing. Detailed phenotyping was performed, including full clinical evaluation, electroretinography, fundus photography, fundus autofluorescence (FAF) imaging, and spectral-domain optical coherence tomography (OCT). RESULTS Two novel homozygous nonsense mutations (c.1530T>A;p.Y510* and c.3454G>T;p.E1152*) in RBP3 were identified in four patients from two families. All four patients had a similar, unusual retinal dystrophy characterized by childhood onset high myopia, generalized rod and cone dysfunction, and an unremarkable fundus appearance. The FAF imaging showed multiple paracentral foci of low autofluorescence in one patient and patchy increased FAF in the region of the vascular arcades in another. The OCT showed loss of outer retinal bands over peripheral macular areas in all 4 cases. CONCLUSIONS To our knowledge, this report is the first to describe the retinal dystrophy in children caused by homozygous nonsense RBP3 mutations, highlighting the requirement for IRBP in normal eye development and visual function. Longitudinal study will reveal if the four children reported here will progress to a more typical retinitis pigmentosa phenotype described previously in adults with RBP3 mutations. The RBP3-related disease should be considered in children with high myopia and retinal dystrophy, particularly when there are no significant fundus changes.
Investigative Ophthalmology & Visual Science | 2014
Sarah Hull; Gavin Arno; Vincent Plagnol; Sarah Chamney; Isabelle Russell-Eggitt; Dorothy A. Thompson; Simon C. Ramsden; Graeme C.M. Black; Anthony G. Robson; Graham E. Holder; Anthony T. Moore; Andrew R. Webster
PURPOSE To present a detailed phenotypic and molecular study of a series of 18 patients from 11 families with retinal dystrophies consequent on mutations in the cone-rod homeobox (CRX) gene and to report a novel phenotype. METHODS Families were ascertained from a tertiary clinic in the United Kingdom and enrolled into retinal dystrophy studies investigating the phenotype and molecular basis of inherited retinal disease. Eleven patients were ascertained from the study cohorts and a further seven from investigation of affected relatives. Detailed phenotyping included electrodiagnostic testing and retinal imaging. Bidirectional Sanger sequencing of all exons and intron-exon boundaries of CRX was performed on all 18 reported patients and segregation confirmed in available relatives. RESULTS Based on clinical characteristics and electrophysiology, four patients had Leber congenital amaurosis (LCA), two had rod-cone dystrophy (RCD), five had cone-rod dystrophy (CORD), one had cone dystrophy (COD), and six had macular dystrophy with different phenotypes observed within 5 of 11 families. The macular dystrophy patients presented between 35 to 50 years of age and had visual acuities at last review ranging from 0.2 to 1.5 logMAR (20/32 to 20/630 Snellen). All 18 patients were heterozygous for a mutation in CRX with seven novel mutations identified. There was no evident association between age of onset and position or type of CRX mutation. De novo mutations were confirmed in three patients. CONCLUSIONS Mutations in CRX demonstrate significant phenotypic heterogeneity both between and within pedigrees. A novel, adult-onset, macular dystrophy phenotype is characterized, further extending our knowledge of the etiology of dominant macular dystrophies.
JAMA Ophthalmology | 2014
Sarah Hull; Gavin Arno; Panagiotis I. Sergouniotis; Peter Tiffin; Arundhati Dev Borman; Aman Chandra; Anthony G. Robson; Graham E. Holder; Andrew R. Webster; Anthony T. Moore
IMPORTANCE Enhanced S-cone syndrome (ESCS) forms part of the differential diagnosis of night blindness in childhood. OBJECTIVE To report in detail the clinical phenotype and molecular genetic findings in a series of children with ESCS. DESIGN, SETTING AND PARTICIPANTS Nine children with ESCS from 5 families underwent full ophthalmic examination, electrophysiological testing, and retinal imaging at a genetic eye disease clinic of a tertiary referral eye hospital. Bidirectional Sanger sequencing of all exons and intron-exon boundaries of NR2E3 was performed. MAIN OUTCOMES AND MEASURES Results of ophthalmic examination and sequence analysis of NR2E3. RESULTS In total, 5 girls and 4 boys with a diagnosis of ESCS were included in the study. All patients had developed nyctalopia from early childhood. Visual acuity ranged from 0.00 to 1.20 logMAR (20/20 to 20/320 Snellen). All patients had hyperopia. Three patients had nummular pigmentary lesions along the arcades as typically seen in adults, 4 patients had mild pigmentary disturbance or white dots along the arcades, and 2 patients had a normal retinal appearance, although their fundus autofluorescence imaging demonstrated foci of increased autofluorescence along the arcades. Three patients had macular schisis-like changes on optical coherence tomography. Eight patients had electrophysiological testing at a mean age of 8.6 years (age range, 3-14 years), and in each patient the findings were consistent with the diagnosis of ESCS. Direct sequencing of NR2E3 identified 3 previously described mutations and 4 novel mutations. Seven patients were compound heterozygous for mutations in NR2E3, and 2 additional sibling patients were presumed to be homozygous for a missense change based on parental sequencing. CONCLUSIONS AND RELEVANCE In this sample, children with ESCS had an early onset of night blindness and hyperopia but no nystagmus. Based on this study, children with ESCS may initially manifest a normal fundus appearance but later develop mottled retinal pigment epithelium change along the arcades, followed by the appearance of white dots in the same distribution. Fundus autofluorescence imaging is abnormal in children with a normal fundus appearance. The electrophysiological findings are pathognomonic and allow targeted molecular screening and a specific diagnosis.
Investigative Ophthalmology & Visual Science | 2016
Sarah Hull; Nicholas Owen; Farrah Islam; Dhani Tracey-White; Vincent Plagnol; Graham E. Holder; Michel Michaelides; Keren J. Carss; F. Lucy Raymond; Jean-Michel Rozet; Simon C. Ramsden; Graeme C.M. Black; Isabelle Perrault; Ajoy Sarkar; Mariya Moosajee; Andrew R. Webster; Gavin Arno; Anthony T. Moore
PURPOSE Mutations in the ciliary transporter gene IFT140, usually associated with a severe syndromic ciliopathy, may also cause isolated retinal dystrophy. A series of patients with nonsyndromic retinitis pigmentosa (RP) due to IFT140 was investigated in this study. METHODS Five probands and available affected family members underwent detailed phenotyping including retinal imaging and electrophysiology. Whole exome sequencing was performed on two probands, a targeted sequencing panel of 176 retinal genes on a further two, and whole genome sequencing on the fifth. Missense mutations of IFT140 were further investigated in vitro using transient plasmid transfection of hTERT-RPE1 cells. RESULTS Eight affected patients from five families had preserved visual acuity until at least the second decade; all had normal development without skeletal manifestations or renal failure at age 13 to 67 years (mean, 42 years; median, 44.5 years). Bi-allelic mutations in IFT140 were identified in all families including two novel mutations: c.2815T > C (p.Ser939Pro) and c.1422_23insAA (p.Arg475Asnfs*14). Expression studies demonstrated a significantly reduced number of cells showing localization of mutant IFT140 with the basal body for two nonsyndromic mutations and two syndromic mutations compared with the wild type and a polymorphism. CONCLUSIONS This study highlights the phenotype of nonsyndromic RP due to mutations in IFT140 with milder retinal dystrophy than that associated with the syndromic disease.
American Journal of Medical Genetics Part A | 2015
Sarah Hull; Gavin Arno; Penelope Thomson; Stacey Mutch; Andrew R. Webster; Harjeet Rai; Virginia Hill; Anthony T. Moore
Incontinentia pigmenti (IP) is an X‐linked, dominant genodermatosis usually fatal in utero in males. In rare circumstances, survival is possible due to abnormal karyotype or somatic mosaicism. In this report, the mechanism and significance of loss of detectable mutation in peripheral blood leukocytes of a somatic mosaic male is discussed and an alternative approach to achieving molecular diagnosis presented. A male patient is reported, who initially presented at 2 days of age with a rash and seizure. Clinical assessment and histology of a skin biopsy were consistent with a diagnosis of IP. He was subsequently found to have bilateral retinal detachments. Screening for the common deletion in IKBKG was negative. A novel nonsense variant, c.937C>T (p.Gln313*) in IKBKG was identified at an approximate level of 15% in a blood sample taken at 10 days of age, but was undetectable in a sample taken at 3 years most likely due to selective apoptosis of mutant cells. Samples taken from the patient when he was 5–6 years of age identified the mutation at a low level in hair root and urine but not in blood or buccal cells. The detection of the mutation in cells derived from all germ layers indicates a de novo event at an early stage of embryogenesis. This is the first report of a nonsense mutation in a male IP patient.