Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah-Jane Haig is active.

Publication


Featured researches published by Sarah-Jane Haig.


The ISME Journal | 2015

Stable-isotope probing and metagenomics reveal predation by protozoa drives E. coli removal in slow sand filters

Sarah-Jane Haig; Melanie Schirmer; Rosalinda D'Amore; Joseph Gibbs; Robert L. Davies; Gavin Collins; Christopher Quince

Stable-isotope probing and metagenomics were applied to study samples taken from laboratory-scale slow sand filters 0.5, 1, 2, 3 and 4 h after challenging with 13C-labelled Escherichia coli to determine the mechanisms and organisms responsible for coliform removal. Before spiking, the filters had been continuously operated for 7 weeks using water from the River Kelvin, Glasgow as their influent source. Direct counts and quantitative PCR assays revealed a clear predator–prey response between protozoa and E. coli. The importance of top-down trophic-interactions was confirmed by metagenomic analysis, identifying several protozoan and viral species connected to E. coli attrition, with protozoan grazing responsible for the majority of the removal. In addition to top-down mechanisms, indirect mechanisms, such as algal reactive oxygen species-induced lysis, and mutualistic interactions between algae and fungi, were also associated with coliform removal. The findings significantly further our understanding of the processes and trophic interactions underpinning E. coli removal. This study provides an example for similar studies, and the opportunity to better understand, manage and enhance E. coli removal by allowing the creation of more complex trophic interaction models.


PLOS ONE | 2016

Culture-Independent Identification of Nontuberculous Mycobacteria in Cystic Fibrosis Respiratory Samples.

Lindsay J. Caverly; Lisa A. Carmody; Sarah-Jane Haig; Nadine Kotlarz; Linda M. Kalikin; Lutgarde Raskin; John J. LiPuma

Respiratory tract infections with nontuberculous mycobacteria (NTM) are increasing in prevalence and are a significant cause of lung function decline in individuals with cystic fibrosis (CF). NTM have been detected in culture-independent analyses of CF airway microbiota at lower rates than would be expected based on published prevalence data, likely due to poor lysing of the NTM cell wall during DNA extraction. We compared a standard bacterial lysis protocol with a modified method by measuring NTM DNA extraction by qPCR and NTM detection with bacterial 16S rRNA gene sequencing. The modified method improved NTM DNA recovery from spiked CF sputum samples by a mean of 0.53 log10 copies/mL for M. abscessus complex and by a mean of 0.43 log10 copies/mL for M. avium complex as measured by qPCR targeting the atpE gene. The modified method also improved DNA sequence based NTM detection in NTM culture-positive CF sputum and bronchoalveolar lavage samples; however, both qPCR and 16S rRNA gene sequencing remained less sensitive than culture for NTM detection. We highlight the limitations of culture-independent identification of NTM from CF respiratory samples, and illustrate how alterations in the bacterial lysis and DNA extraction process can be employed to improve NTM detection with both qPCR and 16S rRNA gene sequencing.


Mbio | 2015

The Relationship between Microbial Community Evenness and Function in Slow Sand Filters

Sarah-Jane Haig; Christopher Quince; Robert L. Davies; Caetano C. Dorea; Gavin Collins

ABSTRACT Two full-scale slow sand filters (SSFs) were sampled periodically from April until November 2011 to study the spatial and temporal structures of the bacterial communities found in the filters. To monitor global changes in the microbial communities, DNA from sand samples taken at different depths and locations within the SSFs and at different filters ages was used for Illumina 16S rRNA gene sequencing. Additionally, 15 water quality parameters were monitored to assess filter performance, with functionally relevant microbial members being identified by using multivariate statistics. The bacterial diversity in the SSFs was found to be much larger than previously documented, with community composition being shaped by the characteristics of the SSFs (filter age and depth) and sampling characteristics (month, side, and distance from the influent and effluent pipes). We found that several key genera (Acidovorax, Halomonas, Sphingobium, and Sphingomonas) were associated with filter performance. In addition, at the whole-community level, a strong positive correlation was found between species evenness and filter performance. This study is the first to comprehensively characterize the microbial community of SSFs and link specific microbes to water quality parameters. In doing so, we reveal key patterns in microbial community structure that relate to overall community function. IMPORTANCE The supply of sustainable, energy-efficient, and safe drinking water to an increasing world population is a huge challenge faced by the water industry. SSFs have been used for hundreds of years to provide a safe and reliable source of potable drinking water, with minimal energy requirements. However, a lack of knowledge pertaining to the treatment mechanisms, particularly the biological processes, underpinning SSF operation has meant that SSFs are still operated as “black boxes.” Understanding these dynamics alongside performance-induced effects associated with operational differences will promote optimized SSF design, maintenance, and operation, creating more efficient and environmentally sustainable filters. Through a spatial-temporal survey of full-scale SSFs at various points of operation, we present the most detailed characterization to date of the functional microbial communities found in SSFs, linking various taxa and community metrics to optimal water quality production. The supply of sustainable, energy-efficient, and safe drinking water to an increasing world population is a huge challenge faced by the water industry. SSFs have been used for hundreds of years to provide a safe and reliable source of potable drinking water, with minimal energy requirements. However, a lack of knowledge pertaining to the treatment mechanisms, particularly the biological processes, underpinning SSF operation has meant that SSFs are still operated as “black boxes.” Understanding these dynamics alongside performance-induced effects associated with operational differences will promote optimized SSF design, maintenance, and operation, creating more efficient and environmentally sustainable filters. Through a spatial-temporal survey of full-scale SSFs at various points of operation, we present the most detailed characterization to date of the functional microbial communities found in SSFs, linking various taxa and community metrics to optimal water quality production.


Environmental Science & Technology | 2016

Bioaugmentation mitigates the impact of estrogen on coliform-grazing protozoa in slow sand filters

Sarah-Jane Haig; Caroline Gauchotte-Lindsay; Gavin Collins; Christopher Quince

Exposure to endocrine-disrupting chemicals (EDCs), such as estrogens, is a growing issue for human and animal health as they have been shown to cause reproductive and developmental abnormalities in wildlife and plants and have been linked to male infertility disorders in humans. Intensive farming and weather events, such as storms, flash flooding, and landslides, contribute estrogen to waterways used to supply drinking water. This paper explores the impact of estrogen exposure on the performance of slow sand filters (SSFs) used for water treatment. The feasibility and efficacy of SSF bioaugmentation with estrogen-degrading bacteria was also investigated, to determine whether removal of natural estrogens (estrone, estradiol, and estriol) and overall SSF performance for drinking water treatment could be improved. Strains for SSF augmentation were isolated from full-scale, municipal SSFs so as to optimize survival in the laboratory-scale SSFs used. Concentrations of the natural estrogens, determined by gas chromatography coupled with mass spectrometry (GC-MS), revealed augmented SSFs reduced the overall estrogenic potency of the supplied water by 25% on average and removed significantly more estrone and estradiol than nonaugmented filters. A negative correlation was found between coliform removal and estrogen concentration in nonaugmented filters. This was due to the toxic inhibition of protozoa, indicating that high estrogen concentrations can have functional implications for SSFs (such as impairing coliform removal). Consequently, we suggest that high estrogen concentrations could impact significantly on water quality production and, in particular, on pathogen removal in biological water filters.


Environmental Science & Technology | 2018

Biofilms in Full-Scale Drinking Water Ozone Contactors Contribute Viable Bacteria to Ozonated Water

Nadine Kotlarz; Nicole Rockey; Terese M. Olson; Sarah-Jane Haig; Larry Sanford; John J. LiPuma; Lutgarde Raskin

Concentrations of viable microbial cells were monitored using culture-based and culture-independent methods across multichamber ozone contactors in a full-scale drinking water treatment plant. Membrane-intact and culturable cell concentrations in ozone contactor effluents ranged from 1200 to 3750 cells/mL and from 200 to 3850 colony forming units/mL, respectively. Viable cell concentrations decreased significantly in the first ozone contact chamber, but rose, even as ozone exposure increased, in subsequent chambers. Our results implicate microbial detachment from biofilms on contactor surfaces, and from biomass present within lime softening sediments in a hydraulic dead zone, as a possible reason for increasing cell concentrations in water samples from sequential ozone chambers. Biofilm community structures on baffle walls upstream and downstream from the dead zone were significantly different from each other ( p = 0.017). The biofilms downstream of the dead zone contained a significantly ( p = 0.036) higher relative abundance of bacteria of the genera Mycobacterium and Legionella than the upstream biofilms. These results have important implications as the effluent from ozone contactors is often treated further in biologically active filters and bacteria in ozonated water continuously seed filter microbial communities.


Mbio | 2018

A High-Throughput Approach for Identification of Nontuberculous Mycobacteria in Drinking Water Reveals Relationship between Water Age and Mycobacterium avium

Sarah-Jane Haig; Nadine Kotlarz; John J. LiPuma; Lutgarde Raskin

ABSTRACT Nontuberculous mycobacteria (NTM) frequently detected in drinking water (DW) include species associated with human infections, as well as species rarely linked to disease. Methods for improved the recovery of NTM DNA and high-throughput identification of NTM are needed for risk assessment of NTM infection through DW exposure. In this study, different methods of recovering bacterial DNA from DW were compared, revealing that a phenol-chloroform DNA extraction method yielded two to four times as much total DNA and eight times as much NTM DNA as two commercial DNA extraction kits. This method, combined with high-throughput, single-molecule real-time sequencing of NTM rpoB genes, allowed the identification of NTM to the species, subspecies, and (in some cases) strain levels. This approach was applied to DW samples collected from 15 households serviced by a chloraminated distribution system, with homes located in areas representing short (<24 h) and long (>24 h) distribution system residence times. Multivariate statistical analysis revealed that greater water age (i.e., combined distribution system residence time and home plumbing stagnation time) was associated with a greater relative abundance of Mycobacterium avium subsp. avium, one of the most prevalent NTM causing infections in humans. DW from homes closer to the treatment plant (with a shorter water age) contained more diverse NTM species, including Mycobacterium abscessus and Mycobacterium chelonae. Overall, our approach allows NTM identification to the species and subspecies levels and can be used in future studies to assess the risk of waterborne infection by providing insight into the similarity between environmental and infection-associated NTM. IMPORTANCE An extraction method for improved recovery of DNA from nontuberculous mycobacteria (NTM), combined with single-molecule real-time sequencing (PacBio) of NTM rpoB genes, was used for high-throughput characterization of NTM species and in some cases strains in drinking water (DW). The extraction procedure recovered, on average, eight times as much NTM DNA and three times as much total DNA from DW as two widely used commercial DNA extraction kits. The combined DNA extraction and sequencing approach allowed high-throughput screening of DW samples to identify NTM, revealing that the relative abundance of Mycobacterium avium subsp. avium increased with water age. Furthermore, the two-step barcoding approach developed as part of the PacBio sequencing method makes this procedure highly adaptable, allowing it to be used for other target genes and species. An extraction method for improved recovery of DNA from nontuberculous mycobacteria (NTM), combined with single-molecule real-time sequencing (PacBio) of NTM rpoB genes, was used for high-throughput characterization of NTM species and in some cases strains in drinking water (DW). The extraction procedure recovered, on average, eight times as much NTM DNA and three times as much total DNA from DW as two widely used commercial DNA extraction kits. The combined DNA extraction and sequencing approach allowed high-throughput screening of DW samples to identify NTM, revealing that the relative abundance of Mycobacterium avium subsp. avium increased with water age. Furthermore, the two-step barcoding approach developed as part of the PacBio sequencing method makes this procedure highly adaptable, allowing it to be used for other target genes and species.


Proceedings of the Nutrition Society | 2015

A detailed analysis of the gut microbial diversity and metabolic activity in children with obesity of different aetiology and lean controls

M. J. Khan; Christopher Quince; Umer Zeeshan Ijaz; Nicholas J. Loman; Szymon T. Calus; Joshua Quick; Sarah-Jane Haig; M. Shaikh; Christine A. Edwards; Konstantinos Gerasimidis

M. J. Khan, C. Quince, V. S, U. Z. Ijaz, N. Loman, S. T Calus, J. Quick, S. J. Haig, M. G. Shaikh, C. A. Edwards and K. Gerasimidis Human Nutrition College of Medicine, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, School of Engineering, University of Glasgow, G12 8QQ, Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT and Department of Endocrinology, Royal Hospital for Sick Children Yorkhill, Glasgow G3 8SJ


Water Research | 2014

Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters

Sarah-Jane Haig; Christopher Quince; Robert L. Davies; Caetano C. Dorea; Gavin Collins


Water Science & Technology: Water Supply | 2011

Biological aspects of slow sand filtration: past, present and future

Sarah-Jane Haig; Gavin Collins; Robert L. Davies; Caetano C. Dorea; Christopher Quince


Environmental Science & Technology | 2016

Urine Bacterial Community Convergence through Fertilizer Production: Storage, Pasteurization, and Struvite Precipitation

Rebecca Lahr; Heather Goetsch; Sarah-Jane Haig; Abraham Noe-Hays; Nancy G. Love; Diana S. Aga; Charles Bott; Betsy Foxman; Jose L. Jimenez; Ting Luo; Kim Nace; Kirtana Ramadugu; Krista Wigginton

Collaboration


Dive into the Sarah-Jane Haig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gavin Collins

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge