Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah K. England is active.

Publication


Featured researches published by Sarah K. England.


Journal of Biological Chemistry | 1996

Functional Differences in Kv1.5 Currents Expressed in Mammalian Cell Lines Are Due to the Presence of Endogenous Kvβ2.1 Subunits

Victor N. Uebele; Sarah K. England; Archana Chaudhary; Michael M. Tamkun; Dirk J. Snyders

The voltage-sensitive currents observed following hKv1.5 α subunit expression in HEK 293 and mouse L-cells differ in the kinetics and voltage dependence of activation and slow inactivation. Molecular cloning, immunopurification, and Western blot analysis demonstrated that an endogenous L-cell Kvβ2.1 subunit assembled with transfected hKv1.5 protein. In contrast, both mRNA and protein analysis failed to detect a β subunit in the HEK 293 cells, suggesting that functional differences observed between these two systems are due to endogenous L-cell Kvβ2.1 expression. In the absence of Kvβ2.1, midpoints for activation and inactivation of hKv1.5 in HEK 293 cells were −0.2 ± 2.0 and −9.6 ± 1.8 mV, respectively. In the presence of Kvβ2.1 these values were −14.1 ± 1.8 and −22.1 ± 3.7 mV, respectively. The β subunit also caused a 1.5-fold increase in the extent of slow inactivation at 50 mV, thus completely reconstituting the L-cell current phenotype in the HEK 293 cells. These results indicate that 1) the Kvβ2.1 subunit can alter Kv1.5 α subunit function, 2) β subunits are not required for α subunit expression, and 3) endogenous β subunits are expressed in heterologous expression systems used to study K+ channel function.


Journal of Cellular and Molecular Medicine | 2011

The contribution of Kv7 channels to pregnant mouse and human myometrial contractility

Laura A. McCallum; Stephanie L. Pierce; Sarah K. England; Iain A. Greenwood; Rachel Tribe

Premature birth accounts for approximately 75% of neonatal mortality and morbidity in the developed world. Despite this, methods for identifying and treating women at risk of preterm labour are limited and many women still present in preterm labour requiring tocolytic therapy to suppress uterine contractility. The aim of this study was to assess the utility of Kv7 channel activators as potential uterine smooth muscle (myometrium) relaxants in tissues from pregnant mice and women. Myometrium was obtained from early and late pregnant mice and from lipopolysaccharide (LPS)‐injected mice (day 15 of gestation; model of infection in pregnancy). Human myometrium was obtained at the time of Caesarean section from women at term (38–41 weeks). RT‐PCR/qRT‐PCR detected KCNQ and KCNE expression in mouse and human myometrium. In mice, there was a global suppression of all KCNQ isoforms, except KCNQ3, in early pregnancy (n= 6, P < 0.001 versus late pregnant); expression subsequently increased in late pregnancy (n= 6). KCNE isoforms were also gestationally regulated (P < 0.05). KCNQ and KCNE isoform expression was slightly down‐regulated in myometrium from LPS‐treated‐mice versus controls (P < 0.05, n= 3–4). XE991 (10 μM, Kv7 inhibitor) significantly increased spontaneous myometrial contractions in vitro in both human and mouse myometrial tissues (P < 0.05) and retigabine/flupirtine (20 μM, Kv7 channel activators) caused profound myometrial relaxation (P < 0.05). In summary, Kv7 activators suppressed myometrial contraction and KCNQ gene expression was sustained throughout gestation, particularly at term. Consequently, activation of the encoded channels represents a novel mechanism for treatment of preterm labour.


Biology of Reproduction | 2014

FSH Receptor (FSHR) Expression in Human Extragonadal Reproductive Tissues and the Developing Placenta, and the Impact of Its Deletion on Pregnancy in Mice

Julie A.W. Stilley; Debora E. Christensen; Kristin B. Dahlem; Rongbin Guan; Donna A. Santillan; Sarah K. England; Ayman Al-Hendy; Patricia A. Kirby; Deborah L. Segaloff

ABSTRACT Expression and function of the follicle-stimulating hormone receptor (FSHR) in females were long thought to be limited to the ovary. Here, however, we identify extragonadal FSHR in both the human female reproductive tract and the placenta, and test its physiological relevance in mice. We show that in nonpregnant women FSHR is present on: endothelial cells of blood vessels in the endometrium, myometrium, and cervix; endometrial glands of the proliferative and secretory endometrium; cervical glands and the cervical stroma; and (at low levels) stromal cells and muscle fibers of the myometrium. In pregnant women, placental FSHR was detected as early as 8–10 wk of gestation and continued through term. It was expressed on: endothelial cells in fetal portions of the placenta and the umbilical cord; epithelial cells of the amnion; decidualized cells surrounding the maternal arteries in the maternal decidua; and the stromal cells and muscle fibers of the myometrium, with particularly strong expression at term. These findings suggest that FSHR expression is upregulated during decidualization and upregulated in myometrium as a function of pregnancy. The presence of FSHR in the placental vasculature suggests a role in placental angiogenesis. Analysis of genetically modified mice in which Fshr is lacking in fetal portions of the placenta revealed adverse effects on fetoplacental development. Our data further demonstrate FSHB and CGA mRNAs in placenta and uterus, consistent with potential local sources of FSH. Collectively, our data suggest heretofore unappreciated roles of extragonadal FSHR in female reproductive physiology.


American Journal of Physiology-cell Physiology | 1998

Distinct domains of the voltage-gated K+ channel Kvβ1.3 β-subunit affect voltage-dependent gating

Victor N. Uebele; Sarah K. England; Daniel J. Gallagher; Dirk J. Snyders; Michael M. Tamkun

The Kvβ1.3 subunit confers a voltage-dependent, partial inactivation (time constant = 5.76 ± 0.14 ms at +50 mV), an enhanced slow inactivation, a hyperpolarizing shift in the activation midpoint, and an increase in the deactivation time constant of the Kv1.5 delayed rectifier. Removal of the first 10 amino acids from Kvβ1.3 eliminated the effects on fast and slow inactivation but not the voltage shift in activation. Addition of the first 87 amino acids of Kvβ1.3 to the amino terminus of Kv1.5 reconstituted fast and slow inactivation without altering the midpoint of activation. Although an internal pore mutation that alters quinidine block (V512A) did not affect Kvβ1.3-mediated inactivation, a mutation of the external mouth of the pore (R485Y) increased the extent of fast inactivation while preventing the enhancement of slow inactivation. These data suggest that 1) Kvβ1.3-mediated effects involve at least two distinct domains of this β-subunit, 2) inactivation involves open channel block that is allosterically linked to the external pore, and 3) the Kvβ1.3-induced shift in the activation midpoint is functionally distinct from inactivation.


Biology of Reproduction | 2008

Overexpression of SK3 Channels Dampens Uterine Contractility to Prevent Preterm Labor in Mice

Stephanie L. Pierce; J. Kresowik; Kathryn G. Lamping; Sarah K. England

The mechanisms that control the timing of labor have yet to be fully characterized. In a previous study, the overexpression of small conductance calcium-activated K(+) channel isoform 3 in transgenic mice, Kcnn3(tm1Jpad)/Kcnn3(tm1Jpad) (also known as SK3(T/T)), led to compromised parturition, which indicates that KCNN3 (also known as SK3) plays an important role in the delivery process. Based on these findings, we hypothesized that SK3 channel expression must be downregulated late in pregnancy to enable the uterus to produce the forceful contractions required for parturition. Thus, we investigated the effects of SK3 channel expression on gestation and parturition, comparing SK3(T/T) mice to wild type (WT) mice. Here, we show in WT mice that SK3 transcript and protein are significantly reduced during pregnancy. We also found the force produced by uterine strips from Pregnancy Day 19 (P19) SK3(T/T) mice was significantly less than that measured in WT or SK3 knockout control (SK3(DOX)) uterine strips, and this effect was reversed by application of the SK3 channel inhibitor apamin. Moreover, two treatments that induce labor in mice failed to result in complete delivery in SK3(T/T) mice within 48 h after injection. Thus, stimuli that initiate parturition under normal circumstances are insufficient to coordinate the uterine contractions needed for the completion of delivery when SK3 channel activity is in excess. Our data indicate that SK3 channels must be downregulated for the gravid uterus to generate labor contractions sufficient for delivery in both term and preterm mice.


Reproductive Sciences | 2011

Effects of Progesterone Treatment on Expression of Genes Involved in Uterine Quiescence

Melvyn S. Soloff; Yow-Jiun Jeng; Michael G. Izban; Mala Sinha; Bruce A. Luxon; Susan J. Stamnes; Sarah K. England

An important action of progesterone during pregnancy is to maintain the uterus in a quiescent state and thereby prevent preterm labor. The causes of preterm labor are not well understood, so progesterone action on the myometrium can provide clues about the processes that keep the uterus from contracting prematurely. Accordingly, we have carried out Affymetrix GeneChip analysis of progesterone effects on gene expression in immortalized human myometrial cells cultured from a patient near the end of pregnancy. Progesterone appears to inhibit uterine excitability by a number of mechanisms, including increased expression of calcium and voltage-operated K+ channels, which dampens the electrical activity of the myometrial cell, downregulation of agents, and receptors involved in myometrial contraction, reduction in cell signal components that lead to increased intracellular Ca2+ concentrations in response to contractile stimuli, and downregulation of proteins involved in the cross-linking of actin and myosin filaments to produce uterine contractions.


Embo Molecular Medicine | 2014

The inwardly rectifying K+ channel KIR7.1 controls uterine excitability throughout pregnancy

Conor McCloskey; Cara C. Rada; Elizabeth Bailey; Samantha McCavera; Hugo A. van den Berg; Jolene Atia; David A. Rand; Anatoly Shmygol; Yi-Wah Chan; Siobhan Quenby; Jan J. Brosens; Manu Vatish; Jie Zhang; Jerod S. Denton; Michael J. Taggart; Catherine A. Kettleborough; David Tickle; Jeff Jerman; Paul D. Wright; Timothy Dale; Srinivasan Kanumilli; Derek J. Trezise; Steve Thornton; Pamela Brown; Roberto Catalano; Nan Lin; Sarah K. England; Andrew M. Blanks

Abnormal uterine activity in pregnancy causes a range of important clinical disorders, including preterm birth, dysfunctional labour and post‐partum haemorrhage. Uterine contractile patterns are controlled by the generation of complex electrical signals at the myometrial smooth muscle plasma membrane. To identify novel targets to treat conditions associated with uterine dysfunction, we undertook a genome‐wide screen of potassium channels that are enriched in myometrial smooth muscle. Computational modelling identified Kir7.1 as potentially important in regulating uterine excitability during pregnancy. We demonstrate Kir7.1 current hyper‐polarizes uterine myocytes and promotes quiescence during gestation. Labour is associated with a decline, but not loss, of Kir7.1 expression. Knockdown of Kir7.1 by lentiviral expression of miRNA was sufficient to increase uterine contractile force and duration significantly. Conversely, overexpression of Kir7.1 inhibited uterine contractility. Finally, we demonstrate that the Kir7.1 inhibitor VU590 as well as novel derivative compounds induces profound, long‐lasting contractions in mouse and human myometrium; the activity of these inhibitors exceeds that of other uterotonic drugs. We conclude Kir7.1 regulates the transition from quiescence to contractions in the pregnant uterus and may be a target for therapies to control uterine contractility.


American Journal of Physiology-endocrinology and Metabolism | 2010

SK3 channel expression during pregnancy is regulated through estrogen and Sp factor-mediated transcriptional control of the KCNN3 gene

Stephanie L. Pierce; Sarah K. England

Overexpression of the small-conductance calcium-activated K(+) channel 3 (SK3) in transgenic mice compromises parturition, suggesting that the SK3 channel plays a role in pregnancy. In wild-type mouse myometrium, expression of SK3 transcript and protein is significantly reduced during pregnancy, but the mechanism(s) responsible for this attenuation of channel expression is unknown. The promoter region of the SK3-encoding mouse KCNN3 gene contains two binding sites for specificity protein (Sp) transcription factors, two of which are expressed in the uterus: Sp1, which enhances gene transcription in response to estrogen; and Sp3, which competes for the same binding motif as Sp1 and can repress gene expression. We investigated the hypothesis that Sp1 and Sp3 regulate SK3 channel expression during pregnancy. In mouse myometrium, Sp1 expression was reduced during late gestation, whereas Sp3 expression levels were constant throughout pregnancy. Using a reporter system, we found that Sp1 overexpression resulted in a significant increase in SK3 promoter activation and that Sp3 cotransfection reduced promoter activation to basal levels. These findings indicate that Sp3 outcompetes Sp1 to decrease SK3 transcription. To determine whether high levels of estrogen in vivo can affect the regulation of SK3 protein levels by Sp factors, ovariectomized mice were implanted with a 17β-estradiol or placebo pellet for 3 wk; estrogen-treated mice had reduced uterine SK3 protein expression compared with placebo-treated counterparts. In human myometrial cells overexpressing Sp1, estrogen treatment stimulated expression of the SK3 transcript. Overall, our findings indicate that Sp1 and Sp3 compete to regulate SK3 channel expression during pregnancy in response to stimulation by estrogen.


Frontiers in Physiology | 2014

Functional insights into modulation of BKCa channel activity to alter myometrial contractility

Ramón A. Lorca; Monali Prabagaran; Sarah K. England

The large-conductance voltage- and Ca2+-activated K+ channel (BKCa) is an important regulator of membrane excitability in a wide variety of cells and tissues. In myometrial smooth muscle, activation of BKCa plays essential roles in buffering contractility to maintain uterine quiescence during pregnancy and in the transition to a more contractile state at the onset of labor. Multiple mechanisms of modulation have been described to alter BKCa channel activity, expression, and cellular localization. In the myometrium, BKCa is regulated by alternative splicing, protein targeting to the plasma membrane, compartmentation in membrane microdomains, and posttranslational modifications. In addition, interaction with auxiliary proteins (i.e., β1- and β2-subunits), association with G-protein coupled receptor signaling pathways, such as those activated by adrenergic and oxytocin receptors, and hormonal regulation provide further mechanisms of variable modulation of BKCa channel function in myometrial smooth muscle. Here, we provide an overview of these mechanisms of BKCa channel modulation and provide a context for them in relation to myometrial function.


American Journal of Physiology-endocrinology and Metabolism | 2011

Altered contribution of RhoA/Rho kinase signaling in contractile activity of myometrium in leptin receptor-deficient mice

Jeremy S. Harrod; Cara C. Rada; Stephanie L. Pierce; Sarah K. England; Kathryn G. Lamping

In late gestation, enhanced myometrial contractility is mediated in part through increased Rho/Rho kinase. Since leptin, which is elevated in pregnancy and obesity, can directly depress myometrial function, we hypothesized that in leptin receptor-deficient mice, myometrial contractility would be greater in late pregnancy due to increased Rho/Rho kinase activity. To test this, we correlated RhoA and Rho kinase expression to contractility in myometrium from nonpregnant (NP) and late-pregnant (P18) heterozygous leptin receptor-deficient mice (db/+) vs. wild-type (WT) mice. In NP mice, KCl-induced contractions were similar between WT and db/+ myometrium. However, the Rho kinase-dependent component of the contractions was greater in db/+ mice, along with an increased expression of Rho kinase. KCl-induced contractions increased in strength in myometrium from P18 WT and db/+ compared with NP. Although the contribution of Rho kinase to contractions was unchanged in P18 WT mice, it was decreased in P18 db/+ mice. The decrease in Rho kinase-dependent contractions in P18 db/+ mice coincided with reduced RhoA and Rho kinase expression relative to NP db/+. Addition of high-fat-induced abnormal glucose utilization prevented changes in Rho kinase function. We conclude that abnormal leptin signaling increases expression and function of Rho kinase to maintain contractile function in NP myometrium and that during pregnancy the contribution of RhoA and Rho kinase expression to myometrial function is reduced despite an increase in myometrial contractility. Thus, other signaling mechanisms appear to compensate when leptin signaling is reduced to maintain contractile function during pregnancy.

Collaboration


Dive into the Sarah K. England's collaboration.

Top Co-Authors

Avatar

Stephanie L. Pierce

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ramón A. Lorca

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Erin L. Reinl

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Cara C. Rada

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kathryn G. Lamping

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Meghan K. Pillai

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison G. Cahill

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monali Wakle-Prabagaran

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge