Sarah L. Dance
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah L. Dance.
Journal of Computational Physics | 2003
Sarah L. Dance; Martin R. Maxey
We investigate the performance of the force-coupling method (FCM) for particulate flow at microscales. In this work, we restrict attention to flows where we may neglect fluid inertia (Stokes flows), particle inertia and Brownian motion. The FCM performs well when distances between solid boundaries are sufficiently large, however it does not capture the local effects of viscous lubrication forces for small gap widths. To improve the results, we develop a parameterization of the lubrication forces for inclusion in the model. This is based on exact results for isolated pairs of particles and single particle-wall configurations. The correction is imposed through the addition of a lubrication barrier force on affected particles. The parameterization is tested for several cases, illustrating both the improvements possible and the limitations.
Tellus A | 2013
Laura Stewart; Sarah L. Dance; Nancy Nichols
Remote sensing observations often have correlated errors, but the correlations are typically ignored in data assimilation for numerical weather prediction. The assumption of zero correlations is often used with data thinning methods, resulting in a loss of information. As operational centres move towards higher-resolution forecasting, there is a requirement to retain data providing detail on appropriate scales. Thus an alternative approach to dealing with observation error correlations is needed. In this article, we consider several approaches to approximating observation error correlation matrices: diagonal approximations, eigendecomposition approximations and Markov matrices. These approximations are applied in incremental variational assimilation experiments with a 1-D shallow water model using synthetic observations. Our experiments quantify analysis accuracy in comparison with a reference or ‘truth’ trajectory, as well as with analyses using the ‘true’ observation error covariance matrix. We show that it is often better to include an approximate correlation structure in the observation error covariance matrix than to incorrectly assume error independence. Furthermore, by choosing a suitable matrix approximation, it is feasible and computationally cheap to include error correlation structure in a variational data assimilation algorithm.
Physics of Fluids | 2004
Sarah L. Dance; Eric Climent; Martin R. Maxey
Simplified models are often used for the short-range interaction of spherical particles in dilute, liquid–solid suspensions. These may range from simple collision barriers to a more detailed inclusion of viscous lubrication forces. Results are given to illustrate the sensitivity of mean particle velocity, fluctuation levels, and microstructure to different parameters and barrier models.
Monthly Weather Review | 2011
Susan Jane Rennie; Sarah L. Dance; Anthony J. Illingworth; Susan P. Ballard; David Simonin
AbstractThe assimilation of Doppler radar radial winds for high-resolution NWP may improve short-term forecasts of convective weather. Using insects as the radar target, it is possible to provide wind observations during convective development. This study aims to explore the potential of these new observations, with three case studies. Radial winds from insects detected by four operational weather radars were assimilated using three-dimensional variational data assimilation (3D-Var) into a 1.5-km resolution version of the Met Office Unified Model, using a southern U.K. domain and no convective parameterization. The effect on the analyzed wind was small, with changes in direction and speed up to 45° and 2 m s−1, respectively. The forecast precipitation was perturbed in space and time but not substantially modified. Radial wind observations from insects show the potential to provide small corrections to the location and timing of showers, but not to completely relocate convergence lines. Overall, quantitati...
Monthly Weather Review | 2016
Joanne A. Waller; David Simonin; Sarah L. Dance; Nancy Nichols; S. P. Ballard
AbstractWith the development of convection-permitting numerical weather prediction the efficient use of high-resolution observations in data assimilation is becoming increasingly important. The operational assimilation of these observations, such as Doppler radar radial winds (DRWs), is now common, although to avoid violating the assumption of uncorrelated observation errors the observation density is severely reduced. To improve the quantity of observations used and the impact that they have on the forecast requires the introduction of the full, potentially correlated, error statistics. In this work, observation error statistics are calculated for the DRWs that are assimilated into the Met Office high-resolution U.K. model (UKV) using a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. This is the first in-depth study using the diagnostic to estimate both horizontal and along-beam observation error statistics. The new results obtai...
Remote Sensing | 2016
Joanne A. Waller; Susan P. Ballard; Sarah L. Dance; Graeme Kelly; Nancy Nichols; David Simonin
It has been common practice in data assimilation to treat observation errors as uncorrelated; however, meteorological centres are beginning to use correlated inter-channel observation errors in their operational assimilation systems. In this work, we are the first to characterise inter-channel and spatial error correlations for Spinning Enhanced Visible and Infrared Imager (SEVIRI) observations that are assimilated into the Met Office high-resolution model. The errors are calculated using a diagnostic that calculates statistical averages of observation-minus-background and observation-minus-analysis residuals. This diagnostic is sensitive to the background and observation error statistics used in the assimilation, although, with careful interpretation of the results, it can still provide useful information. We find that the diagnosed SEVIRI error variances are as low as one-tenth of those currently used in the operational system. The water vapour channels have significantly correlated inter-channel errors, as do the surface channels. The surface channels have larger observation error variances and inter-channel correlations in coastal areas of the domain; this is the result of assimilating mixed pixel (land-sea) observations. The horizontal observation error correlations range between 30 km and 80 km, which is larger than the operational thinning distance of 24 km. We also find that estimates from the diagnostics are unaffected by biased observations, provided that the observation-minus-background and observation-minus-analysis residual means are subtracted.
International Journal of Applied Earth Observation and Geoinformation | 2016
David C. Mason; Javier García-Pintado; Hannah L. Cloke; Sarah L. Dance
The susceptibility of a catchment to flooding is affected by its soil moisture prior to an extreme rainfall event. While soil moisture is routinely observed by satellite instruments, results from previous work on the assimilation of remotely sensed soil moisture into hydrologic models have been mixed. This may have been due in part to the low spatial resolution of the observations used. In this study, the remote sensing aspects of a project attempting to improve flow predictions from a distributed hydrologic model by assimilating soil moisture measurements are described. Advanced Synthetic Aperture Radar (ASAR) Wide Swath data were used to measure soil moisture as, unlike low resolution microwave data, they have sufficient resolution to allow soil moisture variations due to local topography to be detected, which may help to take into account the spatial heterogeneity of hydrological processes. Surface soil moisture content (SSMC) was measured over the catchments of the Severn and Avon rivers in the South West UK. To reduce the influence of vegetation, measurements were made only over homogeneous pixels of improved grassland determined from a land cover map. Radar backscatter was corrected for terrain variations and normalized to a common incidence angle. SSMC was calculated using change detection. To search for evidence of a topographic signal, the mean SSMC from improved grassland pixels on low slopes near rivers was compared to that on higher slopes. When the mean SSMC on low slopes was 30–90%, the higher slopes were slightly drier than the low slopes. The effect was reversed for lower SSMC values. It was also more pronounced during a drying event. These findings contribute to the scant information in the literature on the use of high resolution SAR soil moisture measurement to improve hydrologic models.
Frontiers of Earth Science in China | 2015
David C. Mason; Javier García-Pintado; Hannah L. Cloke; Sarah L. Dance
A basic data requirement of a river flood inundation model is a Digital Terrain Model (DTM) of the reach being studied. The scale at which modeling is required determines the accuracy required of the DTM. For modeling floods in urban areas, a high resolution DTM such as that produced by airborne LiDAR (Light Detection And Ranging) is most useful, and large parts of many developed countries have now been mapped using LiDAR. In remoter areas, it is possible to model flooding on a larger scale using a lower resolution DTM, and in the near future the DTM of choice is likely to be that derived from the TanDEM-X Digital Elevation Model (DEM). A variable-resolution global DTM obtained by combining existing high and low resolution data sets would be useful for modeling flood water dynamics globally, at high resolution wherever possible and at lower resolution over larger rivers in remote areas. A further important data resource used in flood modeling is the flood extent, commonly derived from Synthetic Aperture Radar (SAR) images. Flood extents become more useful if they are intersected with the DTM, when water level observations (WLOs) at the flood boundary can be estimated at various points along the river reach. To illustrate the utility of such a global DTM, two examples of recent research involving WLOs at opposite ends of the spatial scale are discussed. The first requires high resolution spatial data, and involves the assimilation of WLOs from a real sequence of high resolution SAR images into a flood model to update the model state with observations over time, and to estimate river discharge and model parameters, including river bathymetry and friction. The results indicate the feasibility of such an Earth Observation-based flood forecasting system. The second example is at a larger scale, and uses SAR-derived WLOs to improve the lower-resolution TanDEM-X DEM in the area covered by the flood extents. The resulting reduction in random height error is significant.
Proceedings of the 31st International Conference | 2009
Tania Ruth Scott; Polly J. Smith; Sarah L. Dance; David C. Mason; M.J. Baines; Nancy Nichols; Kevin Horsburgh; Peter Kenneth Sweby; Amos S. Lawless
This paper gives an overview of the project Changing coastlines: data assimilation for morphodynamic prediction and predictability. This project is investigating whether data assimilation could be used to improve coastal morphodynamic modeling. The concept of data assimilation is described, and the benefits that data assimilation could bring to coastal morphodynamic modeling are discussed. Application of data assimilation in a simple ID morphodynamic model is presented. This shows that data assimilation can be used to improve the current state of the model bathymetry, and to tune the model parameter. We now intend to implement these ideas in a 2D morphodynamic model, for two study sites. The logistics of this are considered, including model design and implementation, and data requirement issues. We envisage that this work could provide a means for maintaining up-to date information on coastal bathymetry, without the need for costly survey campaigns. This would be useful for a range of coastal management issues, including coastal flood forecasting.
Environmental Modelling and Software | 2018
Elizabeth S. Cooper; Sarah L. Dance; Javier García-Pintado; Nancy Nichols; Polly J. Smith
Abstract Accurate inundation forecasting provides vital information about the behaviour of fluvial flood water. Using data assimilation with an Ensemble Transform Kalman Filter we combine forecasts from a numerical hydrodynamic model with synthetic observations of water levels. We show that reinitialising the model with corrected water levels can cause an initialisation shock and demonstrate a simple novel solution. In agreement with others, we find that although assimilation can accurately correct water levels at observation times, the corrected forecast quickly relaxes to the open loop forecast. Our new work shows that the time taken for the forecast to relax to the open loop case depends on domain length; observation impact is longer-lived in a longer domain. We demonstrate that jointly correcting the channel friction parameter as well as water levels greatly improves the forecast. We also show that updating the value of the channel friction parameter can compensate for bias in inflow.