Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah M. Churchman is active.

Publication


Featured researches published by Sarah M. Churchman.


Annals of the Rheumatic Diseases | 2010

Patients with RA in remission on TNF blockers: when and in whom can TNF blocker therapy be stopped?

Benazir Saleem; Helen I. Keen; Vincent Goëb; Rekha Parmar; Sharmin Nizam; Elizabeth M. A. Hensor; Sarah M. Churchman; Mark Quinn; Richard J. Wakefield; Philip G. Conaghan; Frederique Ponchel; Paul Emery

Objectives Combination therapy with methotrexate (MTX) and tumour necrosis factor (TNF) blockade has increased remission rates in patients with rheumatoid arthritis. However, there are no guidelines regarding cessation of therapy. There is a need for markers predictive of sustained remission following cessation of TNF blocker therapy. Methods Patients in remission (DAS28 <2.6) treated with a TNF blocker and MTX as initial or delayed therapy were recruited. Joints were assessed for grey scale synovitis and power Doppler (PD) activity. Immunological assessment involved advanced six-colour flow cytometry. Results Of the 47 patients recruited, 27 had received initial treatment and 20 delayed treatment with TNF blocking drugs. Two years after stopping TNF blocker therapy, the main predictor of successful cessation was timing of treatment; 59% of patients in the initial treatment group sustained remission compared with 15% in the delayed treatment group (p=0.003). Within the initial treatment group, secondary analysis showed that the only clinical predictor of successful cessation of treatment was shorter symptom duration before receiving treatment (median 5.5 months vs 9 months; p=0.008). No other clinical features were associated with successful cessation of therapy. Thirty-five per cent of patients had low PD activity but levels were not informative. Several immunological parameters were significantly associated with sustained remission including abnormal differentiation subset of T cells and regulatory T cells. Similar non-significant trends were observed in the delayed treatment group. Conclusion In patients in remission with low levels of imaging synovitis receiving combination treatment with a TNF blocker and MTX, immunological parameters and short duration of untreated symptoms were associated with successful cessation of TNF blocker therapy.


Annals of the Rheumatic Diseases | 2014

Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment

Rebeccah J Mathews; James I. Robinson; M. Battellino; Chi Wong; John C. Taylor; Steve Eyre; Sarah M. Churchman; Anthony G. Wilson; John D. Isaacs; Kimme L. Hyrich; Anne Barton; Darren Plant; Sinisa Savic; Graham P. Cook; Piercarlo Sarzi-Puttini; Paul Emery; Jennifer H. Barrett; Ann W. Morgan; Michael F. McDermott

Background The NLRP3-inflammasome, implicated in the pathogenesis of several inflammatory disorders, has been analysed in rheumatoid arthritis (RA). Methods Relative gene expression of NLRP3-inflammasome components was characterised in PBMCs of 29 patients receiving infliximab. A total of 1278 Caucasian patients with RA from the Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate (BRAGGSS) cohort receiving tumour necrosis factor (TNF) antagonists (infliximab, adalimumab and etanercept) were genotyped for 34 single nucleotide polymorphisms (SNPs), spanning the genes NLRP3, MEFV and CARD8. Regression analyses were performed to test for association between genotype and susceptibility and treatment response (disease activity score across 28 joints (DAS28) and EULAR improvement criteria) at 6 months, with secondary expression quantitative trait loci (eQTL) analyses. Results At baseline, gene expression of ASC, MEFV, NLRP3-FL, NLRP3-SL and CASP1 were significantly higher compared with controls whereas CARD8 was lower in the patients. Caspase-1 and interleukin-18 levels were significantly raised in patients with RA. SNPs in NLRP3 showed association with RA susceptibility and EULAR response to anti-TNF in the BRAGGSS cohort, and in monocytes but not B cells, in eQTL analysis of 283 healthy controls. CARD8 SNPs were associated with RA susceptibility and DAS28 improvement in response to anti-TNF and eQTL effects in monocytes and B cells. Conclusions This study found evidence of modulation of the NLRP3-inflammasome in patients with RA prior to receiving infliximab and some evidence of association for SNPs at NLRP3 and CARD8 loci with RA susceptibility and response to anti-TNF. The SNPs associated with susceptibility/response are not the main eQTL variants for either locus, and the associations with treatment response require replication in an independent cohort.


Annals of the Rheumatic Diseases | 2010

Mesenchymal stem cells in rheumatoid synovium: enumeration and functional assessment in relation to synovial inflammation level

Elena Jones; Sarah M. Churchman; Anne English; Maya H Buch; E A Horner; C Burgoyne; Richard Reece; Sally E. Kinsey; Paul Emery; Dennis McGonagle; Frederique Ponchel

Objective: Achieving joint regeneration in rheumatoid arthritis (RA) represents a future challenge. Autologous synovial mesenchymal stem cells (MSCs) could be therapeutically exploited. However, the inflammatory milieu in the RA synovium could adversely affect endogenous MSC function. To test this hypothesis, the frequency and multipotency of RA synovial MSCs was evaluated in relation to existing synovial inflammation. Methods: Synovial inflammation was measured using the arthroscopic visual analogue score (VAS) and further validated using immunohistochemistry and flow cytometry. Highly proliferative clonogenic in vivo MSCs were enumerated following fluorescence-activated cell sorting and expansion for 20 population doublings. MSC multipotency was quantified following standard in vitro culture expansion and trilineage differentiation assays. Real-time PCR, flow cytometry and ELISA were used to evaluate pro- and anti-chondrogenic molecules in standard polyclonal synovial MSCs. Results: The arthroscopic VAS significantly correlated with synovial macrophage infiltration. In RA, synovial MSC chondrogenesis was inhibited in direct relation to VAS (r = −0.777, p<0.05) and reduced compared with control osteoarthritis (OA)-MSCs (p<0.05). In vivo, MSCs resided in the synovial fibroblastic/stromal fraction (CD45−CD31−) and were reduced in frequency in relation to VAS (r = −0.695, p<0.05). In RA-MSCs, CD44 levels correlated negatively with inflammation and positively with chondrogenesis (r = −0.830 and r = 0.865, respectively). Cytokine production and Sox9 expression was similar in RA-MSCs and OA-MSCs. Conclusions: There is a negative relationship between synovial MSC chondrogenic and clonogenic capacities and the magnitude of synovitis in RA. Effective suppression of joint inflammation is therefore necessary for the development of autologous MSC treatments aimed at cartilage regeneration in RA.


Rheumatology | 2008

Interleukin-7 in rheumatoid arthritis

Sarah M. Churchman; Frederique Ponchel

Recent data from several groups demonstrate high levels of IL-7 in the joints of RA patients, but much lower levels in OA. In contrast, circulating levels of IL-7 in RA remain a point of debate. IL-7 has many roles in T cell, dendritic cell and bone biology in humans. Reduced levels of circulating IL-7 probably underlie a number of the dysfunctions associated with circulating T cells in RA and may provide a mechanism for some of the unexplained systemic manifestations of the disease. However, IL-7 in the joint may have a more sinister role, contributing to a vicious cycle perpetuating inflammation. Typically, IL-1beta and TNF-alpha increase the stromal production of IL-7 and in turn, IL-7 up-regulates the production of TNF-alpha by macrophages. Most importantly, IL-7 induces the production of osteoclastogenic cytokines by T cells, leading to the maturation of osteoclasts and therefore bone destruction. By linking the stroma with innate and adaptive immunity in RA, IL-7 may be directing the cellular network, leading to chronic inflammation and joint destruction. Blocking IL-7 may well therefore be of therapeutic value.


Springer Seminars in Immunopathology | 2006

Hereditary auto-inflammatory disorders and biologics

Leigh D. Church; Sarah M. Churchman; Philip N. Hawkins; Michael F. McDermott

The term auto-inflammatory disorders has been coined to describe a group of conditions characterized by spontaneously relapsing and remitting bouts of systemic inflammation without apparent involvement of antigen-specific T cells or significant production of auto-antibodies. The hereditary periodic fever syndromes are considered as the prototypic auto-inflammatory diseases, and genetic studies have yielded important new insights into innate immunity. DNA analysis has greatly enhanced the clinical characterization of these conditions, and elucidation of their molecular aetiopathogenesis has suggested that therapies may be aimed at specific targets within the immune cascade. The availability of biologic response modifiers such as inhibitors of tumour necrosis factor (TNF) and interleukin-1β has greatly improved the outlook for some of these disorders, although effective therapies remain elusive in patients with certain conditions, including hyperimmunoglobulinaemia-D with periodic fever syndrome (HIDS) and a proportion of those with TNF-receptor associated periodic syndrome (TRAPS). Indeed, outstanding challenges and the unique potential to further elucidate molecular mechanisms in innate immunity are illustrated by the dashed early hope that TNF blockade would be a panacea for TRAPS: not only is etanercept (Enbrel) ineffective in some cases, but there are anecdotal reports of this condition being greatly exacerbated by infliximab (Remicade).


Arthritis & Rheumatism | 2012

Transcriptional profile of native CD271+ multipotential stromal cells: Evidence for multiple fates, with prominent osteogenic and Wnt pathway signaling activity

Sarah M. Churchman; Frederique Ponchel; Sally Boxall; Richard J. Cuthbert; Dimitrios Kouroupis; Tarek Roshdy; Peter V. Giannoudis; Paul Emery; Dennis McGonagle; Elena Jones

OBJECTIVE Controversy surrounds the identity and functionality of rare bone marrow-derived multipotential stromal cells (BM-MSCs), including their differentiation capabilities, their relationship to pericytes and hematopoiesis-supporting stromal cells, and the relevance of their culture-expanded progeny in studies of skeletal biology and development of cell-based therapies. The aim of this study was to clarify the nature of candidate BM-MSCs by profiling transcripts that reflect different aspects of their putative functions in vivo. METHODS Rare, sorted BM-derived CD45(-/low) CD271(bright) (CD271) cells were analyzed using 96-gene expression arrays focused on transcripts relevant to mesenchymal-lineage differentiation (toward bone, cartilage, fat, or muscle), hematopoietic and stromal support, and molecules critical to skeletal homeostasis. These cells were compared to matched CD45+ CD271- hematopoietic-lineage cells, culture-expanded MSCs, and skin fibroblasts. When feasible, transcription was validated using flow cytometry. RESULTS CD271 cells had a transcriptional profile consistent with the multiple fates of in vivo MSCs, evident from the observed simultaneous expression of osteogenic, adipogenic, pericytic, and hematopoiesis-supporting genes (e.g., SP7 [osterix], FABP4 [fatty acid binding protein 4], ANGPT1 [angiopoietin 1], and CXCL12 [stromal cell-derived factor 1], respectively). Compared to culture-expanded MSCs and fibroblasts, CD271 cells exhibited greater transcriptional activity, particularly with respect to Wnt-related genes (>1,000-fold increased expression of FRZB [secreted frizzled-related protein 3] and WIF1 [Wnt inhibitory factor 1]). A number of transcripts were identified as novel markers of MSCs. CONCLUSION The native, BM-derived in vivo MSC population is endowed with a gene signature that is compatible with multiple functions, reflecting the topographic bone niche of these cells, and their signature is significantly different from that of culture-expanded MSCs. This indicates that studies of the biologic functions of MSCs in musculoskeletal diseases, including osteoporosis and osteoarthritis, should focus on in vivo MSCs, rather than their culture-adapted progeny.


Journal of Cellular and Molecular Medicine | 2011

NSAIDS inhibit in vitro MSC chondrogenesis but not osteogenesis: implications for mechanism of bone formation inhibition in man

Ippokratis Pountos; Peter V. Giannoudis; Elena Jones; Anne English; Sarah M. Churchman; Sl Field; Frederique Ponchel; H. A. Bird; Paul Emery; Dennis McGonagle

The non‐steroidal anti‐inflammatory drugs (NSAIDs) are widely used for analgesia but may inhibit bone formation. We investigated whether the reported NSAID effect on bone is related to inhibition of bone marrow mesenchymal stem cell (MSC) proliferation and osteogenic and chondrogenic differentiation and evaluated both cyclooxygenase (COX)‐1 and COX‐2 specific drugs. The effects of seven COX‐1 and COX‐2 inhibitors on MSC proliferation and osteogenic and chondrogenic differentiation were tested using Vybrant, sodium 3′‐[1‐(phenylaminocarbonyl)‐ 3,4‐tetrazolium]‐bis (4‐methoxy‐6‐nitro) benzene sulfonic acid hydrate (XTT), functional and quantitative assays of MSC differentiation. The MSC expression of COX‐1 and COX‐2 and prostaglandin E2 (PGE‐2) levels were evaluated serially during lineage differentiation by quantitative PCR and ELISA. None of the NSAIDs at broad range of concentration (range 10−3 to 100 μg/ml) significantly affected MSC proliferation. Surprisingly, MSC osteogenic differentiation inhibition was not evident. However, NSAIDs affected chondrogenic potential with a reduction in sulphated glycosaminoglycans (sGAG) content by 45% and 55% with diclofenac and ketorolac, respectively (P < 0.05 compared to controls). Parecoxib and meloxicam, more COX‐2 specific reagents inhibited sGAG to a lesser degree, 22% and 27% respectively (P < 0.05 compared to controls). Cartilage pellet immunohistochemistry confirmed the above results. Pellet chondrogenesis was associated with increased COX‐1 expression levels but not COX‐2, and COX‐1 specific drugs suppressed MSC PGE‐2 more than COX‐2 specific inhibitors. These findings suggest that NSAIDs may inhibit bone formation via blockage of MSC chondrogenic differentiation which is an important intermediate phase in normal endochondral bone formation.


Bone | 2012

High abundance of CD271 + multipotential stromal cells (MSCs) in intramedullary cavities of long bones

George Cox; Sally Boxall; Peter V. Giannoudis; Conor T. Buckley; Tarek Roshdy; Sarah M. Churchman; Dennis McGonagle; Elena Jones

Aspiration of iliac crest bone marrow (ICBM) remains the most frequent technique used in harvesting multipotential stromal cells (MSCs) for bone regeneration. Although this tissue type is easily accessed by a surgeon, it has a low frequency of MSCs, which is significant given the high cell numbers required for bone regeneration strategies. Lipoaspirates possess higher MSC frequencies, albeit cells with a differentiation profile less suited to orthopaedic interventions. Intra-medullary cavities of long bones have previously been shown to harbour MSCs in animals, however evaluation of their frequency, differentiation capacity and phenotype in humans had not previously been performed. Long bone fatty bone marrow (LBFBM) was collected prior to harvesting bone graft. Basic cellular compositions of donor-matched LBFBM and ICBM aspirates, including the numbers of CD34+ hematopoietic stem cells and CD31+ endothelial cells, were similar. MSCs were enumerated using colony-forming-unit-fibroblast assays and flow cytometry for the presence of a resident LBFBM CD45−/low CD271+ MSC population and revealed a trend for higher MSC numbers (average 5 fold, n = 6) per millilitre of LBFBM compared to donor-matched ICBM. Functional characteristics of resident MSCs, including their growth rates, differentiation potentials and surface phenotypes (CD73+CD105+CD90+) before and after culture-amplification, were similar. Enhanced numbers of MSCs could be recovered following brief enzymatic treatment of solid fragments of LBFBM. Our findings therefore reveal that the intramedullary cavity of the human femur is a depot of MSCs, which, although closely associated with fat, have a differentiation profile equivalent to ICBM. This anatomical site is frequently accessed by the orthopaedic/trauma surgeon and aspiration of the intramedullary cavity represents a ‘low-tech’ method of harvesting potentially large numbers of MSCs for regenerative therapies and research. This article is part of a Special Issue entitled: Interactions Between Bone, Adipose Tissue and Metabolism.


Journal of Autoimmunity | 2014

TLR dependent XBP-1 activation induces an autocrine loop in rheumatoid arthritis synoviocytes.

Sinisa Savic; Lylia Ouboussad; Laura J. Dickie; Janina Geiler; Chi Wong; Gina M. Doody; Sarah M. Churchman; Frederique Ponchel; Paul Emery; Graham P. Cook; Maya H Buch; Reuben Tooze; Michael F. McDermott

X-box binding protein 1 (XBP1) is a central regulator of the endoplasmic reticulum (ER) stress response. It is induced via activation of the IRE1 stress sensor as part of the unfolded protein response (UPR) and has been implicated in several diseases processes. XBP1 can also be activated in direct response to Toll-like receptor (TLR) ligation independently of the UPR but the pathogenic significance of this mode of XBP1 activation is not well understood. Here we show that TLR-dependent XBP1 activation is operative in the synovial fibroblasts (SF) of patients with active rheumatoid arthritis (RA). We investigated the expression of ER stress response genes in patients with active RA and also in patients in remission. The active (spliced) form of (s)XBP1 was significantly overexpressed in the active RA group compared to healthy controls and patients in remission. Paradoxically, expression of nine other ER stress response genes was reduced in active RA compared to patients in remission, suggestive of a UPR-independent process. However, sXBP1 was induced in SF by TLR4 and TLR2 stimulation, resulting in sXBP1-dependent interleukin-6 and tumour necrosis factor (TNF) production. We also show that TNF itself induces sXBP1 in SF, thus generating a potential feedback loop for sustained SF activation. These data confirm the first link between TLR-dependent XBP1 activation and human inflammatory disease. sXBP1 appears to play a central role in this process by providing a convergence point for two different stimuli to maintain activation of SF.


Arthritis & Rheumatism | 2016

Mesenchymal Stem Cell Alterations in Bone Marrow Lesions in Patients With Hip Osteoarthritis.

T. Mark Campbell; Sarah M. Churchman; Alejandro Gomez; Dennis McGonagle; Philip G. Conaghan; Frederique Ponchel; Elena Jones

In patients with osteoarthritis (OA), bone marrow lesions (BMLs) are intimately linked to disease progression. We hypothesized that aberrant multipotential stromal cell (also known as mesenchymal stem cell [MSC]) responses within bone tissue contributes to BML pathophysiology. The aim of this study was to investigate BML and non‐BML native subchondral bone MSCs for numeric, topographic, in vitro functional, and gene expression differences.

Collaboration


Dive into the Sarah M. Churchman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge