Sarah M. Eppley
Portland State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah M. Eppley.
The American Naturalist | 1998
Sarah M. Eppley; Maureen L. Stanton; Richard K. Grosberg
In many dioecious plant populations, males and females appear to be spatially segregated, a pattern that is difficult to explain given its potentially high costs. However, in asexually propagating species, spatial segregation of the sexes may be indistinguishable from superficially similar patterns generated by random establishment of a few genets followed by extensive clonal spread and by gender‐specific differences in rates of clonal spread. In populations where a significant fraction of individuals are not flowering and gender cannot be assigned to this fraction, apparent spatial segregation of the sexes may be due to differential flowering between the sexes. We confirm reports that flowering ramets of the clonal, perennial grass Distichlis spicata are spatially segregated by sex. We extend these studies in two fundamental ways and demonstrate that this species exhibits true spatial segregation of the sexes. First, using RAPD markers, we estimated that at least 50% of ramets in patches with biased sex ratios represent distinct genotypes. Second, we identified a RAPD marker linked to female phenotype (eliminating the possibility that gender is environmentally determined) and used it to show that the majority of patches exhibit significantly biased sex ratios for both ramets and genets, regardless of flowering status.
Evolution | 2007
Sarah M. Eppley; John R. Pannell
Abstract Models of mating-system evolution emphasize the importance of frequency-dependent interactions among mating partners. It is also known that outcross siring success and the selfing rate in self-compatible hermaphrodites can be density dependent. Here, we use array experiments to show that the mating system (i.e., the outcrossing rate) and the siring success of morphs with divergent sex allocation strategies are both density dependent and frequency dependent in androdioecious populations of the wind-pollinated, annual plant Mercurialis annua. In particular, the outcrossing rate is a decreasing function of the mean interplant distance, regulated by a negative exponential pollen fall-off curve. Our results indicate that pollen dispersed from a male inflorescence are over 60% more likely to sire outcrossed progeny than equivalent pollen dispersed from hermaphrodites, likely due to the fact that males, but not hermaphrodites, disperse their pollen from erect inflorescence stalks. Because of this difference, and because males of M. annua produce much more pollen than hermaphrodites, the presence of males in the experimental arrays reduced both the selfing rate and the outcross siring success of hermaphrodites. We use our results to infer a density threshold below which males are unable to persist with hermaphrodites but above which they can invade hermaphroditic populations. We discuss our findings in the context of a metapopulation model, in which males can only persist in well-established populations but are excluded from small, sparse populations, for example, in the early stages of colonization.
Heredity | 2007
Sarah M. Eppley; P J Taylor; Linley K. Jesson
Self-fertilization is a key difference of adaptive significance between species with combined versus separate sexes. In haploid-dominant species such as mosses and ferns, species with either combined or separate sexes (monoicous and dioicous, respectively) have the potential to self-fertilize (intergametophytic selfing), but being monoicous allows an additional mode of selfing (intragametophytic selfing). We used allozyme electrophoresis to estimate deviations from expected levels of heterozygosity under Hardy–Weinberg equilibrium to infer selfing rates in 10 moss species from 36 New Zealand populations. We found that while there were deficiencies of heterozygotes compared to expectation in both monoicous and dioicous mosses, monoicous species had significantly higher levels of heterozygote deficiency than dioicous species (FIS=0.89±0.12 and 0.41±0.11, respectively). Estimated selfing rates suggest that selfing occurs frequently in monoicous populations, and rarely in dioicous populations. However, in two dioicous species (Polytrichadelphus magellanicus and Breutelia pendula), we found significant indications of mixed mating or biparental inbreeding in a handful of populations. These data provide the first analysis of heterozygote deficiency and selfing among haploid-dominant species with breeding system variation, and we discuss our results with respect to the consequences of inbreeding depression and the evolution of breeding systems.
Journal of Evolutionary Biology | 2008
Sarah M. Eppley; L. K. Jesson
Which conditions favour the evolution of hermaphroditism or separate sexes? One classical hypothesis states that an organism’s mode of locomotion (if any) when searching for a mate should influence breeding system evolution. We used published phylogenies to reconstruct evolutionary changes in adult mate‐search efficiency and breeding systems among multicellular organisms. Employing maximum‐likelihood analyses, we found that changes in adult mate‐search efficiency are significantly correlated with changes in breeding system, and this result is robust to uncertainties in the phylogenies. These data provide the first statistical support, across a broad range of taxa, for the hypothesis that breeding systems and mate‐search efficiency did not evolve independently. We discuss our results in context with other causal factors, such as inbreeding avoidance and sexual specialization, likely to affect breeding system evolution.
The Bryologist | 2010
Lloyd R. Stark; D. Nicholas McLetchie; Sarah M. Eppley
Abstract Bryophyte population sex ratios are predominately female-biased, at least with respect to plants expressing sexual structures. One hypothesis to explain this bias is that males produce sexual structures less often than females, but occur at similar frequencies, a hypothesis termed the “shy male hypothesis.” Another nonexclusive possibility is that offspring sex ratios (as sporelings) are biased and populations retain this bias. To test these hypotheses, we examined sex ratios in expressing and nonexpressing shoots for the cosmopolitan moss Bryum argenteum collected in the field, and in shoots grown from spores in the lab. An examination of 154 collections of B. argenteum from native habitats and urban settings in the USA revealed that populations were significantly female-biased (>80% female). Male rarity was most pronounced in aridland regions of the Mojave Desert and California chaparral; males were significantly more common in altered urban habitats and in high elevation native habitats. When all shoots from clumps representing three mixed-sex, sporophytic populations were grown to sex expression, male nonexpressing shoots were not found to be significantly more abundant than expected based on the field expressing shoot sex ratio, lending little support to the “shy male hypothesis.” Offspring sex ratios derived from sporelings were not significantly different from 1∶1, thus not explaining the sharply female-biased population ratios observed in the field. We propose that factors between spore germination and adult maturation, including clonal dynamics, are causing the female-biased population and within-clump sex ratio imbalance of B. argenteum.
Oecologia | 2006
Sarah M. Eppley
If males and females of a species differ in their effect on intraspecific competition then this can have significant ecological and evolutionary consequences because it can lead to size and mortality disparities between the sexes, and thus cause biased population sex ratios. If the degree of sexual dimorphism of competitive effect varies across environments then this variation can generate sex ratio variation within and between populations. In a California population of Distichlis spicata, a dioecious grass species exhibiting extreme within-population sex ratio variation (spatial segregation of the sexes), I evaluated the intraspecific competitive effects of male and female D. spicata seedlings in three soil types. The sex of seedlings was determined using a RAPD-PCR marker co-segregating with female phenotype. Distichlis spicata seedlings, regardless of sex, were six times larger when grown with male versus female conspecific seedlings in soil from microsites where the majority of D. spicata plants are female, and this sexual dimorphism of competitive effect was weaker or did not occur in other soil types. This study suggests that it is not just the higher costs of female versus male reproduction itself that cause spatial segregation of the sexes in D. spicata, but that differences in competitive abilities between the sexes—which occur as early as the seedling stage—can generate sex ratio variation.
American Journal of Botany | 2007
Philip J. Taylor; Sarah M. Eppley; Linley K. Jesson
Inbreeding depression is a critical factor countering the evolution of inbreeding and thus potentially shaping the evolution of plant sexual systems. Current theory predicts that inbreeding depression could have important evolutionary consequences, even in haploid-dominant organisms. To date, no data have been reported on inbreeding depression in moss species. Here, we present data on the magnitude of inbreeding depression in sporophytic traits of moss species with contrasting breeding systems. In Ceratodon purpureus (Ditrichaceae), a moss species with separate sexes, self-fertilizations between sibling gametophytes (intergametophytic selfing) significantly reduced fitness in two of four traits quantified, with seta length and capsule length having inbreeding coefficients significantly different from zero, resulting in a cumulative inbreeding depression that was also significantly greater than zero (δ = 0.619 ± 0.076). In hermaphroditic Funaria hygrometrica (Funariaceae), there was no evidence of inbreeding depression in seta length, spore number, capsule mass, or capsule length resulting from sporophytes generated by self-fertilization within an individual (intragametophytic selfing), and cumulative inbreeding depression was also not different from zero (δ = 0.038 ± 0.022). These results provide evidence that, despite haploid dominance, inbreeding depression can be expressed at the diploid stage in mosses and may have implications for the evolution and maintenance of combined versus separate sexes in mosses.
Plant Ecology | 2005
Sarah M. Eppley
In many dioecious plant species in which spatial distributions of males and females have been examined, the sexes are spatially segregated – usually along an environmental gradient. Unless pollen is uniformly distributed in a population, spatial segregation of the sexes should reduce the average mating success of individuals. In three Californian populations of Distichlis spicata – a wind-pollinated grass species that exhibits spatial segregation of the sexes – I examined patterns of pollen movement and the effects of pollen load and nutrient availability on seed set to determine whether spatial segregation of the sexes actually reduces mating success for both males and females. In two of the populations, pollen dispersal was restricted, and pollen augmentation consistently, significantly increased seed set. However, in the third population – which had the lowest seed set – I found that although there were some indications of pollen limitation, pollen dispersal was not restricted, and seed production was limited primarily by nutrient availability. These results imply that in some populations of D. spicata nutrient limitation on the production of seeds by females may be sufficiently strong that spatial segregation of the sexes causes a fairly low cost to reproductive success compared with a more random distribution of the sexes. However, in other populations, pollen does limit mating success, and the spatial segregation of males and females in these populations is reducing the fecundity of both males and females.
American Journal of Botany | 2009
Sarah M. Eppley; Charlene A. Mercer; Christian Haaning; Camille Brianne Graves
Associations between mycorrhizal fungi and plants can influence intraspecific competition and shape plant population structure. While variation in plant genotypes is known to affect mycorrhizal colonization in crop systems, little is known about how genotypes affect colonization in natural plant populations or how plant sex might influence colonization with mycorrhizal fungi in plant species with dimorphic sexual systems. In this study, we analyzed mycorrhizal colonization in males and females of the wetland dioecious grass Distichlis spicata, which has spatially segregated sexes. Our results suggest that D. spicata males and females interact with mycorrhizal fungi differently. We discuss the implications for the role of this sex-specific symbiotic interaction in the maintenance of the within-population sex ratio bias of D. spicata.
Nature | 2012
Todd N. Rosenstiel; Erin E. Shortlidge; Andrea Natalie Melnychenko; James F. Pankow; Sarah M. Eppley
Sexual reproduction in non-vascular plants requires unicellular free-motile sperm to travel from male to female reproductive structures across the terrestrial landscape. Recent data suggest that microarthropods can disperse sperm in mosses. However, little is known about the chemical communication, if any, that is involved in this interaction or the relative importance of microarthropod dispersal compared to abiotic dispersal agents in mosses. Here we show that tissues of the cosmopolitan moss Ceratodon purpureus emit complex volatile scents, similar in chemical diversity to those described in pollination mutualisms between flowering plants and insects, that the chemical composition of C. purpureus volatiles are sex-specific, and that moss-dwelling microarthropods are differentially attracted to these sex-specific moss volatile cues. Furthermore, using experimental microcosms, we show that microarthropods significantly increase moss fertilization rates, even in the presence of water spray, highlighting the important role of microarthropod dispersal in contributing to moss mating success. Taken together, our results indicate the presence of a scent-based ‘plant–pollinator-like’ relationship that has evolved between two of Earth’s most ancient terrestrial lineages, mosses and microarthropods.