Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah M. McLeod is active.

Publication


Featured researches published by Sarah M. McLeod.


Journal of Bacteriology | 2015

Novel Antibacterial Targets and Compounds Revealed by a High-Throughput Cell Wall Reporter Assay

Asha S. Nayar; Thomas J. Dougherty; Keith E. Ferguson; Brett A. Granger; Lisa McWilliams; Clare Stacey; Lindsey Leach; Shin-ichiro Narita; Hajime Tokuda; Alita A. Miller; Dean G. Brown; Sarah M. McLeod

UNLABELLED A high-throughput phenotypic screen based on a Citrobacter freundii AmpC reporter expressed in Escherichia coli was executed to discover novel inhibitors of bacterial cell wall synthesis, an attractive, well-validated target for antibiotic intervention. Here we describe the discovery and characterization of sulfonyl piperazine and pyrazole compounds, each with novel mechanisms of action. E. coli mutants resistant to these compounds display no cross-resistance to antibiotics of other classes. Resistance to the sulfonyl piperazine maps to LpxH, which catalyzes the fourth step in the synthesis of lipid A, the outer membrane anchor of lipopolysaccharide (LPS). To our knowledge, this compound is the first reported inhibitor of LpxH. Resistance to the pyrazole compound mapped to mutations in either LolC or LolE, components of the essential LolCDE transporter complex, which is required for trafficking of lipoproteins to the outer membrane. Biochemical experiments with E. coli spheroplasts showed that the pyrazole compound is capable of inhibiting the release of lipoproteins from the inner membrane. Both of these compounds have significant promise as chemical probes to further interrogate the potential of these novel cell wall components for antimicrobial therapy. IMPORTANCE The prevalence of antibacterial resistance, particularly among Gram-negative organisms, signals a need for novel antibacterial agents. A phenotypic screen using AmpC as a sensor for compounds that inhibit processes involved in Gram-negative envelope biogenesis led to the identification of two novel inhibitors with unique mechanisms of action targeting Escherichia coli outer membrane biogenesis. One compound inhibits the transport system for lipoprotein transport to the outer membrane, while the other compound inhibits synthesis of lipopolysaccharide. These results indicate that it is still possible to uncover new compounds with intrinsic antibacterial activity that inhibit novel targets related to the cell envelope, suggesting that the Gram-negative cell envelope still has untapped potential for therapeutic intervention.


Angewandte Chemie | 2014

Real‐Time Monitoring of New Delhi Metallo‐β‐Lactamase Activity in Living Bacterial Cells by 1H NMR Spectroscopy

Junhe Ma; Sarah M. McLeod; Kathleen MacCormack; Shubha Sriram; Ning Gao; Alexander L. Breeze; Jun Hu

Disconnections between in vitro responses and those observed in whole cells confound many attempts to design drugs in areas of serious medical need. A method based on 1D 1H NMR spectroscopy is reported that affords the ability to monitor the hydrolytic decomposition of the carbapenem antibiotic meropenem inside Escherichia coli cells expressing New Delhi metallo-β-lactamase subclass 1 (NDM-1), an emerging antibiotic-resistance threat. Cell-based NMR studies demonstrated that two known NDM-1 inhibitors, L-captopril and ethylenediaminetetraacetic acid (EDTA), inhibit the hydrolysis of meropenem in vivo. NDM-1 activity in cells was also shown to be inhibited by spermine, a porin inhibitor, although in an in vitro assay, the influence of spermine on the activity of isolated NDM-1 protein is minimal. This new approach may have generic utility for monitoring reactions involving diffusible metabolites in other complex biological matrices and whole-cell settings, including mammalian cells.


Nature microbiology | 2017

ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii

Thomas F. Durand-Réville; Satenig Guler; Janelle Comita-Prevoir; Brendan Chen; Neil Bifulco; Hoan Huynh; Sushmita D. Lahiri; Adam B. Shapiro; Sarah M. McLeod; Nicole M. Carter; Samir H. Moussa; Camilo Velez-Vega; Nelson B. Olivier; Robert E. McLaughlin; Ning Gao; Jason Thresher; Tiffany Palmer; Beth Andrews; Robert A. Giacobbe; Joseph V. Newman; David E. Ehmann; Boudewijn L. M. de Jonge; John P. O'Donnell; John P. Mueller; Ruben Tommasi; Alita A. Miller

Multidrug-resistant (MDR) bacterial infections are a serious threat to public health. Among the most alarming resistance trends is the rapid rise in the number and diversity of β-lactamases, enzymes that inactivate β-lactams, a class of antibiotics that has been a therapeutic mainstay for decades. Although several new β-lactamase inhibitors have been approved or are in clinical trials, their spectra of activity do not address MDR pathogens such as Acinetobacter baumannii. This report describes the rational design and characterization of expanded-spectrum serine β-lactamase inhibitors that potently inhibit clinically relevant class A, C and D β-lactamases and penicillin-binding proteins, resulting in intrinsic antibacterial activity against Enterobacteriaceae and restoration of β-lactam activity in a broad range of MDR Gram-negative pathogens. One of the most promising combinations is sulbactam–ETX2514, whose potent antibacterial activity, in vivo efficacy against MDR A. baumannii infections and promising preclinical safety demonstrate its potential to address this significant unmet medical need.


Journal of Bacteriology | 2015

Small molecule inhibitors of Gram-negative lipoprotein trafficking discovered by phenotypic screening

Sarah M. McLeod; Paul R. Fleming; Kathleen MacCormack; Robert E. McLaughlin; James Whiteaker; Shin-ichiro Narita; Makiko Mori; Hajime Tokuda; Alita A. Miller

In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy.


Angewandte Chemie | 2015

Target‐Based Whole‐Cell Screening by 1H NMR Spectroscopy

Junhe Ma; Qing Cao; Sarah M. McLeod; Keith L. Ferguson; Ning Gao; Alexander L. Breeze; Jun Hu

An NMR-based approach marries the two traditional screening technologies (phenotypic and target-based screening) to find compounds inhibiting a specific enzymatic reaction in bacterial cells. Building on a previous study in which it was demonstrated that hydrolytic decomposition of meropenem in living Escherichia coli cells carrying New Delhi metallo-β-lactamase subclass 1 (NDM-1) can be monitored in real time by NMR spectroscopy, we designed a cell-based NMR screening platform. A strong NDM-1 inhibitor was identified with cellular IC50 of 0.51 μm, which is over 300-fold more potent than captopril, a known NDM-1 inhibitor. This new screening approach has great potential to be applied to targets in other cell types, such as mammalian cells, and to targets that are only stable or functionally competent in the cellular environment.


Journal of Biological Chemistry | 2014

The role of a novel auxiliary pocket in bacterial phenylalanyl-tRNA synthetase druggability.

Ayome Abibi; Andrew D. Ferguson; Paul R. Fleming; Ning Gao; Laurel Hajec; Jun Hu; Valerie A. Laganas; David C. McKinney; Sarah M. McLeod; D. Bryan Prince; Adam B. Shapiro; Ed T. Buurman

Background: Phenylalanyl-tRNA synthetase inhibitors have been shown to be efficacious in animal models of infection. Results: Inhibitors occupy a newly identified hydrophobic auxiliary binding pocket. Conclusion: Compound binding in this pocket leads to high screening hit rates, resistance frequencies, and elevated plasma protein binding. Significance: New inhibitors may be identified by avoiding the auxiliary pocket. The antimicrobial activity of phenyl-thiazolylurea-sulfonamides against Staphylococcus aureus PheRS are dependent upon phenylalanine levels in the extracellular fluids. Inhibitor efficacy in animal models of infection is substantially diminished by dietary phenylalanine intake, thereby reducing the perceived clinical utility of this inhibitor class. The search for novel antibacterial compounds against Gram-negative pathogens led to a re-evaluation of this phenomenon, which is shown here to be unique to S. aureus. Inhibition of macromolecular syntheses and characterization of novel resistance mutations in Escherichia coli demonstrate that antimicrobial activity of phenyl-thiazolylurea-sulfonamides is mediated by PheRS inhibition, validating this enzyme as a viable drug discovery target for Gram-negative pathogens. A search for novel inhibitors of PheRS yielded three novel chemical starting points. NMR studies were used to confirm direct target engagement for phenylalanine-competitive hits. The crystallographic structure of Pseudomonas aeruginosa PheRS defined the binding modes of these hits and revealed an auxiliary hydrophobic pocket that is positioned adjacent to the phenylalanine binding site. Three viable inhibitor-resistant mutants were mapped to this pocket, suggesting that this region is a potential liability for drug discovery.


PLOS ONE | 2014

Secreted Gaussia princeps luciferase as a reporter of Escherichia coli replication in a mouse tissue cage model of infection.

Mingyu Liu; Christina M. Blinn; Sarah M. McLeod; John Wiseman; Joseph V. Newman; Stewart L. Fisher; Grant K. Walkup

Measurement of bacterial burden in animal infection models is a key component for both bacterial pathogenesis studies and therapeutic agent research. The traditional quantification means for in vivo bacterial burden requires frequent animal sacrifice and enumerating colony forming units (CFU) recovered from infection loci. To address these issues, researchers have developed a variety of luciferase-expressing bacterial reporter strains to enable bacterial detection in living animals. To date, all such luciferase-based bacterial reporters are in cell-associated form. Production of luciferase-secreting recombinant bacteria could provide the advantage of reporting CFU from both infection loci themselves and remote sampling (eg. body fluid and plasma). Toward this end, we have genetically manipulated a pathogenic Escherichia coli (E. coli) strain, ATCC25922, to secrete the marine copepod Gaussia princeps luciferase (Gluc), and assessed the use of Gluc as both an in situ and ex situ reporter for bacterial burden in mouse tissue cage infections. The E. coli expressing Gluc demonstrates in vivo imaging of bacteria in a tissue cage model of infection. Furthermore, secreted Gluc activity and bacterial CFUs recovered from tissue cage fluid (TCF) are correlated along 18 days of infection. Importantly, secreted Gluc can also be detected in plasma samples and serve as an ex situ indicator for the established tissue cage infection, once high bacterial burdens are achieved. We have demonstrated that Gluc from marine eukaryotes can be stably expressed and secreted by pathogenic E. coli in vivo to enable a facile tool for longitudinal evaluation of persistent bacterial infection.


Antimicrobial Agents and Chemotherapy | 2017

The frequency and mechanism of spontaneous resistance to sulbactam combined with the novel β-lactamase inhibitor ETX2514 in clinical isolates of Acinetobacter baumannii

Sarah M. McLeod; Adam B. Shapiro; Samir H. Moussa; Robert E. McLaughlin; Boudewijn L. M. de Jonge; Alita A. Miller

ABSTRACT The novel diazabicyclooctenone ETX2514 is a potent, broad-spectrum serine β-lactamase inhibitor that restores sulbactam activity against resistant Acinetobacter baumannii. The frequency of spontaneous resistance to sulbactam-ETX2514 in clinical isolates was found to be 7.6 × 10−10 to <9.0 × 10−10 at 4× MIC and mapped to residues near the active site of penicillin binding protein 3 (PBP3). Purified mutant PBP3 proteins demonstrated reduced affinity for sulbactam. In a sulbactam-sensitive isolate, resistance also mapped to stringent response genes associated with resistance to PBP2 inhibitors, suggesting that in addition to β-lactamase inhibition, ETX2514 may enhance sulbactam activity in A. baumannii via inhibition of PBP2.


Antiviral Research | 2016

Novel diversity-oriented synthesis-derived respiratory syncytial virus inhibitors identified via a high throughput replicon-based screen

Jeremy R. Duvall; Lynn VerPlank; Barbara Ludeke; Sarah M. McLeod; Maurice D. Lee; Karthick Vishwanathan; Carol Mulrooney; Sebastian le Quement; Qin Yu; Michelle Palmer; Paul R. Fleming; Rachel Fearns; Michael Foley; Christina Scherer

Respiratory syncytial virus (RSV) infections affect millions of children and adults every year. Despite the significant disease burden, there are currently no safe and effective vaccines or therapeutics. We employed a replicon-based high throughput screen combined with live-virus triaging assays to identify three novel diversity-oriented synthesis-derived scaffolds with activity against RSV. One of these small molecules is shown to target the RSV polymerase (L protein) to inhibit viral replication and transcription; the mechanisms of action of the other small molecules are currently unknown. The compounds described herein may provide attractive inhibitors for lead optimization campaigns.


Protein Expression and Purification | 2014

Overexpression of Pseudomonas aeruginosa LpxC with its inhibitors in an acrB-deficient Escherichia coli strain

Ning Gao; Sarah M. McLeod; Laurel Hajec; Nelson B. Olivier; Sushmita D. Lahiri; D. Bryan Prince; Jason Thresher; Philip L. Ross; James Whiteaker; Peter Doig; Amanda Haixi Li; Pamela Hill; Mark Cornebise; Folkert Reck; Michael R. Hale

In Gram-negative bacteria, the cell wall is surrounded by an outer membrane, the outer leaflet of which is comprised of charged lipopolysaccharide (LPS) molecules. Lipid A, a component of LPS, anchors this molecule to the outer membrane. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a zinc-dependent metalloamidase that catalyzes the first committed step of biosynthesis of Lipid A, making it a promising target for antibiotic therapy. Formation of soluble aggregates of Pseudomonas aeruginosa LpxC protein when overexpressed in Escherichia coli has limited the availability of high quality protein for X-ray crystallography. Expression of LpxC in the presence of an inhibitor dramatically increased protein solubility, shortened crystallization time and led to a high-resolution crystal structure of LpxC bound to the inhibitor. However, this approach required large amounts of compound, restricting its use. To reduce the amount of compound needed, an overexpression strain of E. coli was created lacking acrB, a critical component of the major efflux pump. By overexpressing LpxC in the efflux deficient strain in the presence of LpxC inhibitors, several structures of P. aeruginosa LpxC in complex with different compounds were solved to accelerate structure-based drug design.

Collaboration


Dive into the Sarah M. McLeod's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam B. Shapiro

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge