Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah M. McWhirter is active.

Publication


Featured researches published by Sarah M. McWhirter.


Nature Immunology | 2003

IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway.

Katherine A. Fitzgerald; Sarah M. McWhirter; Kerrie L. Faia; Daniel C. Rowe; Eicke Latz; Douglas T. Golenbock; Anthony J. Coyle; Sha-Mei Liao; Tom Maniatis

The transcription factors interferon regulatory factor 3 (IRF3) and NF-κB are required for the expression of many genes involved in the innate immune response. Viral infection, or the binding of double-stranded RNA to Toll-like receptor 3, results in the coordinate activation of IRF3 and NF-κB. Activation of IRF3 requires signal-dependent phosphorylation, but little is known about the signaling pathway or kinases involved. Here we report that the noncanonical IκB kinase homologs, IκB kinase-ε (IKKε) and TANK-binding kinase-1 (TBK1), which were previously implicated in NF-κB activation, are also essential components of the IRF3 signaling pathway. Thus, IKKε and TBK1 have a pivotal role in coordinating the activation of IRF3 and NF-κB in the innate immune response.


Proceedings of the National Academy of Sciences of the United States of America | 2004

IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts

Sarah M. McWhirter; Katherine A. Fitzgerald; Jacqueline Rosains; Daniel C. Rowe; Douglas T. Golenbock; Tom Maniatis

Virus infection, double-stranded RNA, and lipopolysaccharide each induce the expression of genes encoding IFN-α and -β and chemokines, such as RANTES (regulated on activation, normal T cell expressed and secreted) and IP-10 (IFN-γ inducible protein 10). This induction requires the coordinate activation of several transcription factors, including IFN-regulatory factor 3 (IRF3). The signaling pathways leading to IRF3 activation are triggered by the binding of pathogen-specific products to Toll-like receptors and culminate in the phosphorylation of specific serine residues in the C terminus of IRF3. Recent studies of human cell lines in culture have implicated two noncanonical IκB kinase (IKK)-related kinases, IKK-ε and Traf family member-associated NF-κB activator (TANK)-binding kinase 1 (TBK1), in the phosphorylation of IRF3. Here, we show that purified recombinant IKK-ε and TBK1 directly phosphorylate the critical serine residues in IRF3. We have also examined the expression of IRF3-dependent genes in mouse embryonic fibroblasts (MEFs) derived from Tbk1-/- mice, and we show that TBK1 is required for the activation and nuclear translocation of IRF3 in these cells. Moreover, Tbk1-/- MEFs show marked defects in IFN-α and -β, IP-10, and RANTES gene expression after infection with either Sendai or Newcastle disease viruses or after engagement of the Toll-like receptors 3 and 4 by double-stranded RNA and lipopolysaccharide, respectively. Finally, TRIF (TIR domain-containing adapter-inducing IFN-β), fails to activate IRF3-dependent genes in Tbk1-/- MEFs. We conclude that TBK1 is essential for IRF3-dependent antiviral gene expression.


Science | 2007

Multiple Functions of the IKK-Related Kinase IKKε in Interferon-Mediated Antiviral Immunity

Benjamin R. tenOever; Sze-Ling Ng; Mark A. Chua; Sarah M. McWhirter; Adolfo García-Sastre; Tom Maniatis

IKKϵ is an IKK (inhibitor of nuclear factor κBkinase)–related kinase implicated in virus induction of interferon-β (IFNβ). We report that, although mice lacking IKKϵ produce normal amounts of IFNβ, they are hypersusceptible to viral infection because of a defect in the IFN signaling pathway. Specifically, a subset of type I IFN-stimulated genes are not activated in the absence of IKKϵ because the interferon-stimulated gene factor 3 complex (ISGF3) does not bind to promoter elements of the affected genes. We demonstrate that IKKϵ is activated by IFNβ and that IKKϵ directly phosphorylates signal transducer and activator of transcription 1 (STAT1), a component of ISGF3. We conclude that IKKϵ plays a critical role in the IFN-inducible antiviral transcriptional response.


Cell Reports | 2015

Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity

Leticia Corrales; Laura Hix Glickman; Sarah M. McWhirter; David B. Kanne; Kelsey E. Sivick; George E. Katibah; Seng-Ryong Woo; Edward Lemmens; Tamara Banda; Justin J. Leong; Ken Metchette; Thomas W. Dubensky; Thomas F. Gajewski

Spontaneous tumor-initiated T cell priming is dependent on IFN-β production by tumor-resident dendritic cells. On the basis of recent observations indicating that IFN-β expression was dependent upon activation of the host STING pathway, we hypothesized that direct engagement of STING through intratumoral (IT) administration of specific agonists would result in effective anti-tumor therapy. After proof-of-principle studies using the mouse STING agonist DMXAA showed a potent therapeutic effect, we generated synthetic cyclic dinucleotide (CDN) derivatives that activated all human STING alleles as well as murine STING. IT injection of STING agonists induced profound regression of established tumors in mice and generated substantial systemic immune responses capable of rejecting distant metastases and providing long-lived immunologic memory. Synthetic CDNs have high translational potential as a cancer therapeutic.


Journal of Experimental Medicine | 2009

A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP

Sarah M. McWhirter; Roman Barbalat; Kathryn M. Monroe; Mary F. Fontana; Mamoru Hyodo; Nathalie T. Joncker; Ken J. Ishii; Shizuo Akira; Marco Colonna; Zhijian J. Chen; Katherine A. Fitzgerald; Yoshihiro Hayakawa; Russell E. Vance

The innate immune system responds to unique molecular signatures that are widely conserved among microbes but that are not normally present in host cells. Compounds that stimulate innate immune pathways may be valuable in the design of novel adjuvants, vaccines, and other immunotherapeutics. The cyclic dinucleotide cyclic-di–guanosine monophosphate (c-di-GMP) is a recently appreciated second messenger that plays critical regulatory roles in many species of bacteria but is not produced by eukaryotic cells. In vivo and in vitro studies have previously suggested that c-di-GMP is a potent immunostimulatory compound recognized by mouse and human cells. We provide evidence that c-di-GMP is sensed in the cytosol of mammalian cells via a novel immunosurveillance pathway. The potency of cytosolic signaling induced by c-di-GMP is comparable to that induced by cytosolic delivery of DNA, and both nucleic acids induce a similar transcriptional profile, including triggering of type I interferons and coregulated genes via induction of TBK1, IRF3, nuclear factor κB, and MAP kinases. However, the cytosolic pathway that senses c-di-GMP appears to be distinct from all known nucleic acid–sensing pathways. Our results suggest a novel mechanism by which host cells can induce an inflammatory response to a widely produced bacterial ligand.


Science Translational Medicine | 2015

STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade

Juan Fu; David B. Kanne; Meredith Leong; Laura Hix Glickman; Sarah M. McWhirter; Edward E. Lemmens; Ken Mechette; Justin J. Leong; Peter Lauer; Weiqun Liu; Kelsey E. Sivick; Qi Zeng; Kevin C. Soares; Lei Zheng; Daniel A. Portnoy; Joshua J. Woodward; Drew M. Pardoll; Thomas W. Dubensky; Young J. Kim

Cyclic dinucleotide formulated cancer vaccine combined with PD-1 blockade can induce regression of tumors that do not express PD-L1 constitutively. A therapy that STINGs tumors Stimulator of interferon genes, or STING, is a receptor that is found on a variety of cell types and activates an immune response in response to cyclic dinucleotides. Fu et al. found that combining cyclic dinucleotides with a cellular cancer vaccine called STINGVAX was effective against multiple types of tumors in mouse models. The authors then modified the cyclic dinucleotides to strengthen their binding to human STING, increasing their antitumor activity. The authors also showed that treatment with STINGVAX caused cancer cells to up-regulate PD-L1, a protein that suppresses the immune response. Inhibiting the PD-L1 pathway in mice treated with STINGVAX was very effective at killing even poorly immunogenic tumors. Stimulator of interferon genes (STING) is a cytosolic receptor that senses both exogenous and endogenous cytosolic cyclic dinucleotides (CDNs), activating TBK1/IRF3 (interferon regulatory factor 3), NF-κB (nuclear factor κB), and STAT6 (signal transducer and activator of transcription 6) signaling pathways to induce robust type I interferon and proinflammatory cytokine responses. CDN ligands were formulated with granulocyte-macrophage colony-stimulating factor (GM-CSF)–producing cellular cancer vaccines—termed STINGVAX—that demonstrated potent in vivo antitumor efficacy in multiple therapeutic models of established cancer. We found that rationally designed synthetic CDN derivative molecules, including one with an Rp,Rp dithio diastereomer and noncanonical c[A(2′,5′)pA(3′,5′)p] phosphate bridge structure, enhanced antitumor efficacy of STINGVAX in multiple aggressive therapeutic models of established cancer in mice. Antitumor activity was STING-dependent and correlated with increased activation of dendritic cells and tumor antigen–specific CD8+ T cells. Tumors from STINGVAX-treated mice demonstrated marked PD-L1 (programmed death ligand 1) up-regulation, which was associated with tumor-infiltrating CD8+IFNγ+ T cells. When combined with PD-1 (programmed death 1) blockade, STINGVAX induced regression of palpable, poorly immunogenic tumors that did not respond to PD-1 blockade alone.


Cellular Microbiology | 2010

Induction of type I interferons by bacteria.

Kathryn M. Monroe; Sarah M. McWhirter; Russell E. Vance

Type I interferons (IFNs) are secreted cytokines that orchestrate diverse immune responses to infection. Although typically considered to be most important in the response to viruses, type I IFNs are also induced by most, if not all, bacterial pathogens. Although diverse mechanisms have been described, bacterial induction of type I IFNs occurs upon stimulation of two main pathways: (i) Toll‐like receptor (TLR) recognition of bacterial molecules such as lipopolysaccharide (LPS); (ii) TLR‐independent recognition of molecules delivered to the host cell cytosol. Cytosolic responses can be activated by two general mechanisms. First, viable bacteria can secrete stimulatory ligands into the cytosol via specialized bacterial secretion systems. Second, ligands can be released from bacteria that lyse or are degraded. The bacterial ligands that induce the cytosolic pathways remain uncertain in many cases, but appear to include various nucleic acids. In this review, we discuss recent advances in our understanding of how bacteria induce type I interferons and the roles type I IFNs play in host immunity.


Journal of Biological Chemistry | 2007

Interferon Regulatory Factor 3 Is Regulated by a Dual Phosphorylation-dependent Switch

Daniel Panne; Sarah M. McWhirter; Tom Maniatis; Stephen C. Harrison

The transcription factor interferon regulatory factor 3 (IRF-3) regulates genes in the innate immune response. IRF-3 is activated through phosphorylation by the kinases IKKϵ and/or TBK1. Phosphorylation results in IRF-3 dimerization and removal of an autoinhibitory structure to allow interaction with the coactivators CBP/p300. The precise role of the different phosphorylation sites has remained controversial. Using purified proteins we show that TBK1 can directly phosphorylate full-length IRF-3 in vitro. Phosphorylation at residues in site 2 (Ser396—Ser405) alleviates autoinhibition to allow interaction with CBP (CREB-binding protein) and facilitates phosphorylation at site 1 (Ser385 or Ser386). Phosphorylation at site 1 is, in turn, required for IRF-3 dimerization. The data support a two-step phosphorylation model for IRF-3 activation mediated by TBK1.


Cell | 2005

Connecting Mitochondria and Innate Immunity

Sarah M. McWhirter; Benjamin R. tenOever; Tom Maniatis

Viral infection results in the activation of multiple signaling pathways, but how these pathways are coordinated remains a mystery. Two studies, one published in this issue of Cell (Seth et al., 2005) and the other in Molecular Cell (Xu et al., 2005), identify a new intracellular signaling protein that is required for activating type I interferon expression in response to viral infection. In addition,Seth et al. (2005) show that the function of this protein, which they call MAVS, requires that it be localized to the mitochondria. This observation establishes an unexpected link between innate immunity and an organelle with evolutionary origins in aerobic bacteria.


Journal of Biological Chemistry | 1999

The Cap-binding Protein eIF4E Promotes Folding of a Functional Domain of Yeast Translation Initiation Factor eIF4G1

Panda E. C. Hershey; Sarah M. McWhirter; John D. Gross; Gerhard Wagner; Tom Alber; Alan B. Sachs

The association of eucaryotic translation initiation factor eIF4G with the cap-binding protein eIF4E establishes a critical link between the mRNA and the ribosome during translation initiation. This association requires a conserved seven amino acid peptide within eIF4G that binds to eIF4E. Here we report that a 98-amino acid fragment of S. cerevisiae eIF4G1 that contains this eIF4E binding peptide undergoes an unfolded to folded transition upon binding to eIF4E. The folding of the eIF4G1 domain was evidenced by the eIF4E-dependent changes in its protease sensitivity and 1H-15N HSQC NMR spectrum. Analysis of a series of charge-to-alanine mutations throughout the essential 55.4-kDa core of yeast eIF4G1 also revealed substitutions within this 98-amino acid region that led to reduced eIF4E bindingin vivo and in vitro. These data suggest that the association of yeast eIF4E with eIF4G1 leads to the formation of a structured domain within eIF4G1 that could serve as a specific site for interactions with other components of the translational apparatus. They also suggest that the stability of the native eIF4E-eIF4G complex is determined by amino acid residues outside of the conserved seven-residue consensus sequence.

Collaboration


Dive into the Sarah M. McWhirter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David B. Kanne

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken Metchette

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meredith Leong

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge