Sarah Milne
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah Milne.
Nature | 1999
Stephan Beck; D Geraghty; Hidetoshi Inoko; Lee Rowen; B Aguado; Seiamak Bahram; Rd Campbell; Simon Forbes; T Guillaudeux; Leroy Hood; Roger Horton; M Janer; C Jasoni; Anup Madan; Sarah Milne; M Neville; A Oka; S Qin; G Ribas-Despuig; Jane Rogers; Takashi Shiina; T Spies; G Tamiya; H Tashiro; John Trowsdale; Q Vu; L. Williams; M Yamazaki
Here we report the first complete sequence and gene map of a human major histocompatibility complex (MHC), a region on chromosome 6 which is essential to the immune system (reviewed in ref. 1). When it was discovered over 50 years ago the region was thought to specify histocompatibility genes, but their nature has been resolved only in the last two decades. Although many of the 224 identified gene loci (128 predicted to be expressed) are still of unknown function, we estimate that about 40% of the expressed genes have immune system function. Over 50% of the MHC has been sequenced twice, in different haplotypes, giving insight into the extraordinary polymorphism and evolution of this region. Several genes, particularly of the MHC class II and III regions, can be traced by sequence similarity and synteny to over 700 million years ago, clearly predating the emergence of the adaptive immune system some 400 million years ago. The sequence is expected to be invaluable for the identification of many common disease loci. In the past, the search for these loci has been hampered by the complexity of high gene density and linkage disequilibrium.Here we report the first complete sequence and gene map of a human major histocompatibility complex (MHC), a region on chromosome 6 which is essential to the immune system (reviewed in ref. 1). When it was discovered over 50 years ago the region was thought to specify histocompatibility genes, but their nature has been resolved only in the last two decades. Although many of the 224 identified gene loci (128 predicted to be expressed) are still of unknown function, we estimate that about 40% of the expressed genes have immune system function. Over 50% of the MHC has been sequenced twice, in different haplotypes, giving insight into the extraordinary polymorphism and evolution of this region. Several genes, particularly of the MHC class II and III regions, can be traced by sequence similarity and synteny to over 700 million years ago, dearly predating the emergence of the adaptive immune system some 400 million years ago. The sequence is expected to be invaluable for the identification of many common disease loci. In the past, the search for these loci has been hampered by the complexity of high gene density and linkage disequilibrium.Here we report the first complete sequence and gene map of a human major histocompatibility complex (MHC), a region on chromosome 6 which is essential to the immune system (reviewed in ref. 1). When it was discovered over 50 years ago the region was thought to specify histocompatibility genes, but their nature has been resolved only in the last two decades. Although many of the 224 identified gene loci (128 predicted to be expressed) are still of unknown function, we estimate that about 40% of the expressed genes have immune system function. Over 50% of the MHC has been sequenced twice, in different haplotypes, giving insight into the extraordinary polymorphism and evolution of this region. Several genes, particularly of the MHC class II and III regions, can be traced by sequence similarity and synteny to over 700 million years ago, clearly predating the emergence of the adaptive immune system some 400 million years ago. The sequence is expected to be invaluable for the identification of many common disease loci. In the past, the search for these loci has been hampered by the complexity of high gene density and linkage disequilibrium.
Nature | 1999
Jim Kaufman; Sarah Milne; Thomas W. Göbel; Brian A. Walker; Jansen P. Jacob; Charles Auffray; Rima Zoorob; Stephan Beck
Here we report the sequence of the region that determines rapid allograft rejection in chickens, the chicken major histocompatibility complex (MHC). This 92-kilobase region of the B locus contains only 19 genes, making the chicken MHC roughly 20-fold smaller than the human MHC. Virtually all the genes have counterparts in the human MHC, defining a minimal essential set of MHC genes conserved over 200 million years of divergence between birds and mammals. They are organized differently, with the class III region genes located outside the class II and class I region genes. The absence of proteasome genes is unexpected and might explain unusual peptide-binding specificities of chicken class I molecules. The presence of putative natural killer receptor gene(s) is unprecedented and might explain the importance of the B locus in the response to the herpes virus responsible for Mareks disease. The small size and simplicity of the chicken MHC allows co-evolution of genes as haplotypes over considerable periods of time, and makes it possible to study the striking MHC-determined pathogen-specific disease resistance at the molecular level.
Immunological Reviews | 1999
Jim Kaufman; Jansen P. Jacob; Jain Shaw; Brain Walker; Sarah Milne; Stephan Beck; Jan Salomonsen
Summary: Some years ago, we used our data for class I genes, proteins and peptide‐binding specificities to develop the hypothesis that the chicken B‐F/B‐L region represents a “minimal essential MHC”, In this view, the B locus contains the classical (highly expressed and polymorphic) class I α and class II β multigene families, which are reduced to one or two members, with many other genes moved away or deleted from the chicken genome altogether. We found that a single dominantly expressed class I gene determines the immune response to certain infectious pathogens, due to peptide‐binding specificity and cell‐surface expression level. This stands in stark contrast to well‐studied mammals like humans and mice, in which every haplotype is more‐or‐less responsive to every pathogen and vaccine, presumably due to the multigene family of MHC molecules present. In order to approach the basis for a single dominantly expressed class I molecule, we have sequenced a portion of the B complex and examined the location and polymorphism of the class I (B‐F)α, TAP and class II (B‐L) β genes. The region is remarkably compact and simple, with many of the genes expected from the MHC of mammals absent, including LMP, class II α and DO genes as well as most class III region genes. However, unexpected genes were present, including tapasin and putative natural killer receptor genes. The region is also organised differently from mammals, with the TAPs in between the class I genes, the tapasin gene in between the class II (B‐L) β genes, and the C4 gene outside of the class I α and class II β genes. The close proximity of TAP and class I α genes leads to the possibility of co‐evolution, which can drive the use of a single dominantly expressed class I molecule with peptide‐binding specificity like the TAP molecule. There is also a single dominantly expressed class II β gene, but the reason for this is not yet clear. Finally, the presence of the C4 gene outside of the classical class I α and class II β genes suggests the possibility that this organisation was ancestral, although a number of models of organization and evolution are still possible, given the presence of the Rfp‐γ region with non‐classical class I α and class II β genes as well as the presence of multigene families of B‐G and rRNA genes.
Journal of Immunology | 2005
Sally L. Rogers; Thomas W. Göbel; Birgit C. Viertlboeck; Sarah Milne; Stephan Beck; Jim Kaufman
The sequencing of the chicken MHC led to the identification of two open reading frames, designated B-NK and B-lec, that were predicted to encode C-type lectin domains. C-type lectin domains are not encoded in the MHC of any animal described to date; therefore, this observation was completely unexpected, particularly given that the chicken has a “minimal essential MHC.” In this study, we describe the initial characterization of the B-NK and B-lec genes, and show that they share greatest homology with C-type lectin-like receptors encoded in the human NK complex (NKC), in particular NKR-P1 and lectin-like transcript 1 (LLT1), respectively. In common with NKR-P1 and LLT1, B-NK and B-lec are located next to each other and transcribed in opposite orientation. Like human NKR-P1, B-NK has a functional inhibitory signaling motif in the cytoplasmic tail and is expressed in NK cells. In contrast, B-lec contains an endocytosis motif in the cytoplasmic tail, and like LLT1, is an early activation Ag. Further analysis leads us to propose that there are four subgroups of C-type lectin-like receptors in the NKC, which arose as a result of duplication events. Moreover, this analysis suggests that the NKC may be considered a fifth paralogous region, and therefore shares an ancient common origin with the MHC. This provides evidence that C-type lectin-like receptors were present in the preduplication, primordial MHC region, and suggests that an original function of MHC molecules was for recognition by NK cell receptors encoded nearby.
Journal of Immunology | 2007
Iain Shaw; Timothy J. Powell; Denise A. Marston; Ken Baker; Andy van Hateren; Patricia Riegert; Michael V. Wiles; Sarah Milne; Stephan Beck; Jim Kaufman
Compared with the MHC of typical mammals, the chicken MHC (BF/BL region) of the B12 haplotype is smaller, simpler, and rearranged, with two classical class I genes of which only one is highly expressed. In this study, we describe the development of long-distance PCR to amplify some or all of each class I gene separately, allowing us to make the following points. First, six other haplotypes have the same genomic organization as B12, with a poorly expressed (minor) BF1 gene between DMB2 and TAP2 and a well-expressed (major) BF2 gene between TAP2 and C4. Second, the expression of the BF1 gene is crippled in three different ways in these haplotypes: enhancer A deletion (B12, B19), enhancer A divergence and transcription start site deletion (B2, B4, B21), and insertion/rearrangement leading to pseudogenes (B14, B15). Third, the three kinds of alterations in the BF1 gene correspond to dendrograms of the BF1 and poorly expressed class II B (BLB1) genes reflecting mostly neutral changes, while the dendrograms of the BF2 and well-expressed class II (BLB2) genes each have completely different topologies reflecting selection. The common pattern for the poorly expressed genes reflects the fact the BF/BL region undergoes little recombination and allows us to propose a pattern of descent for these chicken MHC haplotypes from a common ancestor. Taken together, these data explain how stable MHC haplotypes predominantly express a single class I molecule, which in turn leads to striking associations of the chicken MHC with resistance to infectious pathogens and response to vaccines.
European Journal of Immunology | 2000
Michaela Torkar; Anja Haude; Sarah Milne; Stephan Beck; John Trowsdale; Michael J. Wilson
The leukocyte receptor cluster (LRC) is a highly polymorphic region of human chromosome 19q13.4 that encompasses at least 24 members of the immunoglobulin superfamily (Ig‐SF). The centromeric end of the LRC contains eight Ig‐SF loci, namely LAIR1 and seven ILT genes. All ILT genes conform to prototypic ILT gene structures. ILT6 is the only member of the ILT family that lacks a transmembrane and cytoplasmic domain. Close examination of the ILT6 genomic sequence reveals high similarity of this locus with the organization of activating ILT genes. However, the ILT6 transcript runs through the putative splice site of exon 8 that encodes for an extracellular stalk region, leading to a premature in‐frame stop codon. Downstream of exon 8 are three pseudo exons that are not included in any of the known ILT6 transcripts, but share high homology to the equivalent region in activating ILT loci, suggesting that these genes have evolved from a common ancestral sequence. Comparison of two haplotypes over this region revealed a remarkable polymorphism with respect to the ILT6 gene which lacks exons 1–7 in one allele, reminiscent of the presence/absence variation displayed by the closely related and genetically linked KIR loci. Detailed sequence analysis of the two LAIR/ILT clusters suggests that the two complexes may have evolved from an inverted duplication.
Immunogenetics | 2005
Brian A. Walker; Andy van Hateren; Sarah Milne; Stephan Beck; Jim Kaufman
We have previously shown that in the chicken major histocompatibility complex, the two transporters associated with antigen processing genes (TAP1 and TAP2) are located head to head between two classical class I genes. Here we show that the region between these two TAP genes has transcription factor-binding sites in common with class I gene promoters. The TAP genes are also up-regulated by interferon-γ in a similar way to mammalian TAP genes and in a way that suggests they are both transcribed from a bi-directional promoter. The gene structures of TAP1 and TAP2 differ from that of human TAPs in that TAP1 has a truncated exon 1 and TAP2 has fused exons, resulting in a much smaller gene size. The truncation of TAP1 results in the loss of approximately 150 amino acids, which are thought to be involved in endoplasmic reticulum retention, heterodimer formation and tapasin binding, compared to human TAP1. Most of the protein sequence features involved in binding ATP are conserved, with two exceptions: chicken TAP1 has a glycine in the switch region where other TAPs have glutamine or histidine, and both chicken TAP genes have serines in the C motif where mammalian TAP2 has an alanine. Lastly, the chicken TAP genes are highly polymorphic, with at least as many TAP alleles as there are class I alleles, as seen by investigating nine inbred lines of chicken. The close proximity of the TAP genes to the class I genes and the high level of polymorphism may allow co-evolution of the genes, allowing TAP molecules to transport peptides specifically for the class I molecules of that haplotype.
Dna Sequence | 1997
Terry Avis; Emma K. Clark; Tina L. Flack; Maryam Mohammadi; Sarah Milne; David Niblett; Sophie Palmer; Samantha Phillips; Coline Smalley; Matthew Tagney; Karen L. Thorpe; Ben Tubby; Jo Westhorp; Stephan Beck
Chromosome 6 is probably best known for encoding the major histocompatibility complex (MHC) which is essential to the human immune response. In addition, it has been shown to be associated with many diseases such Schizophrenia, Diabetes, Arthritis, Haemochromatosis, Narcolepsy, Epilepsy, Retinitis Pigmentosa, Deafness, Ovarian Cancer, and many more. Chromosome 6 is about 180 Mb in size and is estimated to encode around 3500 genes of which only about 10% are currently known. It is our aim to map, sequence and annotate the entire chromosome in close collaboration with the chromosome 6 community.
Proceedings of the National Academy of Sciences of the United States of America | 2000
Michael J. Wilson; Michaela Torkar; Anja Haude; Sarah Milne; Tania A. Jones; Denise Sheer; Stephan Beck; John Trowsdale
Immunogenetics | 2000
J. P. Jacob; Sarah Milne; Stephan Beck; Jim Kaufman