Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah N. Campion is active.

Publication


Featured researches published by Sarah N. Campion.


Toxicological Sciences | 2008

Acquired Resistance to Acetaminophen Hepatotoxicity is Associated with Induction of Multidrug Resistance-Associated Protein 4 (Mrp4) in Proliferating Hepatocytes

Lauren M. Aleksunes; Sarah N. Campion; Michael J. Goedken; José E. Manautou

Treatment with hepatotoxicants such as acetaminophen (APAP) causes resistance to a second, higher dose of the same toxicant (autoprotection). APAP induces hepatic mRNA and protein levels of the multidrug resistance-associated proteins (Mrp) transporters in mice and humans. Basolateral efflux transporters Mrp3 and Mrp4 are the most significantly induced. We hypothesized that upregulation of Mrp3 and Mrp4 is one mechanism by which hepatocytes become resistant to a subsequent higher dose of APAP by limiting accumulation of xeno-, endobiotics, and byproducts of hepatocellular injury. The purpose of this study was to evaluate Mrp3 and Mrp4 expression in proliferating hepatocytes in a mouse model of APAP autoprotection. Plasma and livers were collected from male C57BL/6J mice treated with APAP 400 mg/kg for determination of hepatotoxicity and protein expression. Maximal Mrp3 and Mrp4 induction occurred 48 h after APAP. Mrp4 upregulation occurred selectively in proliferating hepatocytes. Additional groups of APAP-pretreated mice were challenged 48 h later with a second, higher dose of APAP. APAP-pretreated mice had reduced hepatotoxicity after APAP challenge compared to those pretreated with vehicle. A more rapid recovery of glutathione (GSH) in APAP-pretreated mice corresponded with increases in GSH synthetic enzymes. Interestingly, mice pretreated and challenged with APAP had dramatic increases in Mrp4 expression as well as enhanced hepatocyte proliferation. Inhibition of hepatocyte replication with colchicine not only restored sensitivity of APAP-pretreated mice to injury, but also blocked Mrp4 induction. Mrp4 overexpression may be one phenotypic property of proliferating hepatocytes that protects against subsequent hepatotoxicant exposure by mechanisms that are presently unknown.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Hepatic Mrp4 induction following acetaminophen exposure is dependent on Kupffer cell function.

Sarah N. Campion; Rachel Johnson; Lauren M. Aleksunes; Michael J. Goedken; Nico van Rooijen; George L. Scheffer; Nathan J. Cherrington; José E. Manautou

During acetaminophen (APAP) hepatotoxicity, increased expression of multidrug resistance-associated proteins 2, 3, and 4 (Mrp2-4) occurs. Mrp4 is the most significantly upregulated transporter in mouse liver following APAP treatment. Although the expression profiles of liver transporters following APAP hepatotoxicity are well characterized, the regulatory mechanisms contributing to these changes remain unknown. We hypothesized that Kupffer cell-derived mediators participate in the regulation of hepatic transporters during APAP toxicity. To investigate this, C57BL/6J mice were pretreated with clodronate liposomes (0.1 ml iv) to deplete Kupffer cells and then challenged with APAP (500 mg/kg ip). Liver injury was assessed by plasma alanine aminotransferase and hepatic transporter protein expression was determined by Western blot and immunohistochemistry. Depletion of Kupffer cells by liposomal clodronate increased susceptibility to APAP hepatotoxicity. Although increased expression of several efflux transporters was observed after APAP exposure, only Mrp4 was found to be differentially regulated following Kupffer cell depletion. At 48 and 72 h after APAP dosing, Mrp4 levels were increased by 10- and 33-fold, respectively, in mice receiving empty liposomes. Immunohistochemistry revealed Mrp4 staining confined to centrilobular hepatocytes. Remarkably, Kupffer cell depletion completely prevented Mrp4 induction by APAP. Elevated plasma levels of TNF-alpha and IL-1beta were also prevented by Kupffer cell depletion. These findings show that Kupffer cells protect the liver from APAP toxicity and that Kupffer cell mediators released in response to APAP are likely responsible for the induction of Mrp4.


Drug Metabolism and Disposition | 2015

Altered Regulation of Hepatic Efflux Transporters Disrupts Acetaminophen Disposition in Pediatric Nonalcoholic Steatohepatitis

Mark J. Canet; Matthew D. Merrell; Rhiannon N. Hardwick; Amy M. Bataille; Sarah N. Campion; Daniel W. Ferreira; Stavra A. Xanthakos; José E. Manautou; Hassan H. A-Kader; Robert P. Erickson; Nathan J. Cherrington

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, representing a spectrum of liver pathologies that include simple hepatic steatosis and the more advanced nonalcoholic steatohepatitis (NASH). The current study was conducted to determine whether pediatric NASH also results in altered disposition of acetaminophen (APAP) and its two primary metabolites, APAP-sulfate and APAP-glucuronide. Pediatric patients with hepatic steatosis (n = 9) or NASH (n = 3) and healthy patients (n = 12) were recruited in a small pilot study design. All patients received a single 1000-mg dose of APAP. Blood and urine samples were collected at 1, 2, and 4 hours postdose, and APAP and APAP metabolites were determined by high-performance liquid chromatography. Moreover, human liver tissues from patients diagnosed with various stages of NAFLD were acquired from the Liver Tissue Cell Distribution System to investigate the regulation of the membrane transporters, multidrug resistance–associated protein 2 and 3 (MRP2 and MRP3, respectively). Patients with the more severe disease (i.e., NASH) had increased serum and urinary levels of APAP-glucuronide along with decreased serum levels of APAP-sulfate. Moreover, an induction of hepatic MRP3 and altered canalicular localization of the biliary efflux transporter, MRP2, describes the likely mechanism for the observed increase in plasma retention of APAP-glucuronide, whereas altered regulation of sulfur activation genes may explain decreased sulfonation activity in NASH. APAP-glucuronide and APAP-sulfate disposition is altered in NASH and is likely due to hepatic membrane transporter dysregulation as well as altered intracellular sulfur activation.


Reproductive Toxicology | 2013

Comparative assessment of the timing of sexual maturation in male Wistar Han and Sprague-Dawley rats.

Sarah N. Campion; Francisco R. Carvallo; Robert E. Chapin; William S. Nowland; David Beauchamp; Raul T. Jamon; Rebecca Koitz; Timothy R. Winton; Gregg D. Cappon; Mark E. Hurtt

Given the increasing use of Wistar Han (WH) rats in regulatory toxicology studies, these studies were performed to characterize the onset of sexual maturation in maturing WH rats as compared to Sprague-Dawley (SD) rats. Beginning on postnatal day (PND) 38 through PND 91 groups (n=8) of untreated WH rats were evaluated for maturation of the male reproductive system. Testicular spermatid head counts increased beginning on PND 42 until PND 70. Sperm were detected in the caput, corpus, and cauda epididymis on PND 45, 49, and 49, respectively, and counts increased through PND 91. Sperm motility was at adult levels by PND 63. The morphology of the testis/epididymis of all animals at day 70 or older was consistent with qualitative sexual maturity. Based on these endpoints, WH rats were determined to be sexually mature at PND 70, and many of these endpoints evaluated in SD rats exhibited nearly identical trends.


EXS | 2012

Male reprotoxicity and endocrine disruption

Sarah N. Campion; Natasha Catlin; Nicholas E. Heger; Sara E. Pacheco; Camelia M. Saffarini; Moses A. Sandrof; Kim Boekelheide

Mammalian reproductive tract development is a tightly regulated process that can be disrupted following exposure to drugs, toxicants, endocrine-disrupting chemicals (EDCs), or other compounds via alterations to gene and protein expression or epigenetic regulation. Indeed, the impacts of developmental exposure to certain toxicants may not be fully realized until puberty or adulthood when the reproductive tract becomes sexually mature and altered functionality is manifested. Exposures that occur later in life, once development is complete, can also disrupt the intricate hormonal and paracrine interactions responsible for adult functions, such as spermatogenesis. In this chapter, the biology and toxicology of the male reproductive tract is explored, proceeding through the various life stages including in utero development, puberty, adulthood, and senescence. Special attention is given to the discussion of EDCs, chemical mixtures, low-dose effects, transgenerational effects, and potential exposure-related causes of male reproductive tract cancers.


Toxicology and Applied Pharmacology | 2014

Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection)

Meeghan O'Connor; Petra Koza-Taylor; Sarah N. Campion; Lauren M. Aleksunes; Xinsheng Gu; Ahmed Enayetallah; Michael P. Lawton; José E. Manautou

Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400mg/kg) and then challenged 48h later with 600mg APAP/kg. Livers were obtained 4 or 24h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430_2 GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection.


ALTEX-Alternatives to Animal Experimentation | 2013

In vitro testicular toxicity models : Opportunities for advancement via biomedical engineering techniques

Louise Parks Saldutti; Bruce K. Beyer; William J. Breslin; Terry R. Brown; Robert E. Chapin; Sarah N. Campion; Brian P. Enright; Elaine M. Faustman; Paul M. D. Foster; Thomas Hartung; William Kelce; James H. Kim; Elizabeth G. Loboa; Aldert H. Piersma; David Seyler; Katie Turner; Hanry Yu; Xiaozhong Yu; Jennifer C. Sasaki

To address the pressing need for better in vitro testicular toxicity models, a workshop sponsored by the International Life Sciences Institute (ILSI), the Health and Environmental Science Institute (HESI), and the Johns Hopkins Center for Alternatives to Animal Testing (CAAT), was held at the Mt. Washington Conference Center in Baltimore, MD, USA on October 26-27, 2011. At this workshop, experts in testis physiology, toxicology, and tissue engineering discussed approaches for creating improved in vitro environments that would be more conducive to maintaining spermatogenesis and steroidogenesis and could provide more predictive models for testicular toxicity testing. This workshop report is intended to provide scientists with a broad overview of relevant testicular toxicity literature and to suggest opportunities where bioengineering principles and techniques could be used to build improved in vitro testicular models for safety evaluation. Tissue engineering techniques could, conceivably, be immediately implemented to improve existing models. However, it is likely that in vitro testis models that use single or multiple cell types will be needed to address such endpoints as accurate prediction of chemically induced testicular toxicity in humans, elucidation of mechanisms of toxicity, and identification of possible biomarkers of testicular toxicity.


Toxicological Sciences | 2010

Suppression of Radiation-induced Testicular Germ Cell Apoptosis by 2,5-Hexanedione Pretreatment. II. Gene Array Analysis Reveals Adaptive Changes in Cell Cycle and Cell Death Pathways

Sarah N. Campion; E. Andres Houseman; Moses A. Sandrof; Janan B. Hensley; Yunxia Sui; Kevin W. Gaido; Zhijin Wu; Kim Boekelheide

Sertoli cells are essential for testicular germ cell maintenance and survival. We made the unexpected observation that x-radiation (x-ray)-induced germ cell loss is attenuated by co-exposure with the Sertoli cell toxicant 2,5-hexanedione (HD). The mechanisms underlying this attenuation of germ cell apoptosis with reduced Sertoli cell support are unknown. The current study was performed to examine alterations in testicular gene expression with co-exposure to HD and x-ray. Adult male rats were exposed to HD (0.33 or 1%) in the drinking water for 18 days followed by x-ray (2 or 5 Gy), resulting in nine treatment groups. Testis samples were collected after 3 h and total messenger RNA was analyzed using Affymetrix Rat Genome 230 2.0 arrays. Normalized log2-expression values were analyzed using LIMMA and summarized using linear contrasts designed to summarize the aggregated effect, in excess of x-ray alteration, of HD across all treatment groups. These contrasts were compared with the overall linear trend expression for x-ray, to determine whether HD effects were agonistic or antagonistic with respect to x-ray damage. Overrepresentation analysis to identify biological pathways where HD modification of gene expression was the greatest was performed. HD exerted a significant influence on genes involved in cell cycle and cell death/apoptosis. The results of this study provide insight into the mechanisms underlying attenuated germ cell toxicity following HD and x-ray co-exposure through the analysis of co-exposure effects on gene expression, and suggest that HD pre-exposure reduces Sertoli cell supported germ cell proliferation thereby reducing germ cell vulnerability to x-rays.


Toxicological Sciences | 2010

Suppression of radiation-induced testicular germ cell apoptosis by 2,5-hexanedione pretreatment. III. Candidate gene analysis identifies a role for fas in the attenuation of X-ray-induced apoptosis.

Sarah N. Campion; Moses A. Sandrof; Hideki Yamasaki; Kim Boekelheide

Germ cell apoptosis directly induced by x-radiation (x-ray) exposure is stage specific, with a higher incidence in stage II/III seminiferous tubules. A priming exposure to the Sertoli cell toxicant 2,5-hexanedione (HD) results in a marked reduction in x-ray-induced germ cell apoptosis in these affected stages. Because of the stage specificity of these responses, examination of associated gene expression in whole testis tissue has clear limitations. Laser capture microdissection (LCM) of specific cell populations in the testis is a valuable technique for investigating the responses of different cell types following toxicant exposure. LCM coupled with quantitative real-time PCR was performed to examine the expression of apoptosis-related genes at both early (3 h) and later (12 h) time points after x-ray exposure, with or without the priming exposure to HD. The mRNAs examined include Fas, FasL, caspase 3, bcl-2, p53, PUMA, and AEN, which were identified either by literature searches or microarray analysis. Group 1 seminiferous tubules (stages I-VI) exhibited the greatest changes in gene expression. Further analysis of this stage group (SG) revealed that Fas induction by x-ray is significantly attenuated by HD co-exposure. Selecting only for germ cells from seminiferous tubules of the most sensitive SG has provided further insight into the mechanisms involved in the co-exposure response. It is hypothesized that following co-exposure, germ cells adapt to the lack of Sertoli cell support by reducing the Fas response to normal FasL signals. These findings provide a better understanding and appreciation of the tissue complexity and technical difficulties associated with examining gene expression in the testis.


Toxicology and Applied Pharmacology | 2009

Effect of allyl alcohol on hepatic transporter expression: Zonal patterns of expression and role of Kupffer cell function

Sarah N. Campion; Cristina Tatis-Rios; Lisa M. Augustine; Michael J. Goedken; Nico van Rooijen; Nathan J. Cherrington; José E. Manautou

During APAP toxicity, activation of Kupffer cells is critical for protection from hepatotoxicity and up-regulation of multidrug resistance-associated protein 4 (Mrp4) in centrilobular hepatocytes. The present study was performed to determine the expression profile of uptake and efflux transporters in mouse liver following treatment with allyl alcohol (AlOH), a periportal hepatotoxicant. This study also investigated the role of Kupffer cells in AlOH hepatotoxicity, and whether changes in transport protein expression by AlOH are dependent on the presence of Kupffer cells. C57BL/6J mice received 0.1 ml clodronate liposomes to deplete Kupffer cells or empty liposomes 48 h prior to dosing with 60 mg/kg AlOH, i.p. Hepatotoxicity was assessed by plasma ALT and histopathology. Hepatic transporter mRNA and protein expression were determined by branched DNA signal amplification assay and Western blotting, respectively. Depletion of Kupffer cells by liposomal clodronate treatment resulted in heightened susceptibility to AlOH toxicity. Exposure to AlOH increased mRNA levels of several Mrp genes, while decreasing organic anion transporting polypeptides (Oatps) mRNA expression. Protein analysis mirrored many of these mRNA changes. The presence of Kupffer cells was not required for the observed changes in uptake and efflux transporters induced by AlOH. Immunofluorescent analysis revealed enhanced Mrp4 staining exclusively in centrilobular hepatocytes of AlOH treated mice. These findings demonstrate that Kupffer cells are protective from AlOH toxicity and that induction of Mrp4 occurs in liver regions away from areas of AlOH damage independent of Kupffer cell function. These results suggest that Kupffer cell mediators do not play a role in mediating centrilobular Mrp4 induction in response to periportal damage by AlOH.

Collaboration


Dive into the Sarah N. Campion's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher Houle

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge