Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah P. Walters is active.

Publication


Featured researches published by Sarah P. Walters.


Applied and Environmental Microbiology | 2005

Host Distributions of Uncultivated Fecal Bacteroidales Bacteria Reveal Genetic Markers for Fecal Source Identification

Linda K. Dick; Anne E. Bernhard; Timothy J. Brodeur; Jorge W. Santo Domingo; Joyce M. Simpson; Sarah P. Walters; Katharine G. Field

ABSTRACT The purpose of this study was to examine host distribution patterns among fecal bacteria in the order Bacteroidales, with the goal of using endemic sequences as markers for fecal source identification in aquatic environments. We analyzed Bacteroidales 16S rRNA gene sequences from the feces of eight hosts: human, bovine, pig, horse, dog, cat, gull, and elk. Recovered sequences did not match database sequences, indicating high levels of uncultivated diversity. The analysis revealed both endemic and cosmopolitan distributions among the eight hosts. Ruminant, pig, and horse sequences tended to form host- or host group-specific clusters in a phylogenetic tree, while human, dog, cat, and gull sequences clustered together almost exclusively. Many of the human, dog, cat, and gull sequences fell within a large branch containing cultivated species from the genus Bacteroides. Most of the cultivated Bacteroides species had very close matches with multiple hosts and thus may not be useful targets for fecal source identification. A large branch containing cultivated members of the genus Prevotella included cloned sequences that were not closely related to cultivated Prevotella species. Most ruminant sequences formed clusters separate from the branches containing Bacteroides and Prevotella species. Host-specific sequences were identified for pigs and horses and were used to design PCR primers to identify pig and horse sources of fecal pollution in water. The primers successfully amplified fecal DNAs from their target hosts and did not amplify fecal DNAs from other species. Fecal bacteria endemic to the host species may result from evolution in different types of digestive systems.


Water Research | 2009

Persistence of nucleic acid markers of health-relevant organisms in seawater microcosms: implications for their use in assessing risk in recreational waters.

Sarah P. Walters; Kevan M. Yamahara; Alexandria B. Boehm

In the last decade, the use of culture-independent methods for detecting indicator organisms and pathogens in recreational waters has increased and has led to heightened interest in their use for routine water quality monitoring. However, a thorough understanding of the persistence of genetic markers in environmental waters is lacking. In the present study, we evaluate the persistence of enterococci, enterovirus, and human-specific Bacteroidales in seawater microcosms. Two microcosms consisted of seawater seeded with human sewage. Two additional seawater microcosms were seeded with naked Enterococcus faecium DNA and poliovirus RNA. One of each replicate microcosm was exposed to natural sunlight; the other was kept in complete darkness. In the sewage microcosms, concentrations of enterococci and enterovirus were measured using standard culture-dependent methods as well as QPCR and RT-QPCR respectively. Concentrations of human-specific Bacteroidales were determined with QPCR. In the naked-genome microcosms, enterococci and enterovirus markers were enumerated using QPCR and RT-QPCR, respectively. In the sewage microcosm exposed to sunlight, concentrations of culturable enterococci fell below the detection limit within 5 days, but the QPCR signal persisted until the end of the experiment (day 28). Culturable enterococci did not persist as long as infectious enteroviruses. The ability to culture enteroviruses and enterococci was lost before detection of the genetic markers was lost, but the human-specific Bacteroidales QPCR signal persisted for a similar duration as infectious enteroviruses in the sewage microcosm exposed to sunlight. In the naked-genome microcosms, DNA and RNA from enterococci and enterovirus, respectively, persisted for over 10d and did not vary between the light and dark treatments. These results indicate differential persistence of genetic markers and culturable organisms of public health relevance in an environmental matrix and have important management implications.


Applied and Environmental Microbiology | 2009

Growth of Enterococci in Unaltered, Unseeded Beach Sands Subjected to Tidal Wetting†

Kevan M. Yamahara; Sarah P. Walters; Alexandria B. Boehm

ABSTRACT Enterococci are indicator bacteria used to assess the risk of acquiring enteric disease from swimming in marine waters. Previous work identified beach sands as reservoirs of enterococci which can be transported from the sand to the sea, where they may instigate beach advisories. The present study establishes that naturally occurring enterococci can replicate in beach sands under environmentally relevant conditions. In unseeded, nonsterile microcosm experiments, it was shown that intermittent wetting of sands by seawater, like that which would occur at the high tide line, stimulates the transient replication of enterococci at rates of 0.20 to 0.63 per day (equivalent to doubling times of 1.1 to 3.5 days). Replication was not observed in control microcosms that were not subjected to wetting. Enterococci were enumerated using both culture-dependent (membrane filtration and mEI media) and culture-independent (quantitative PCR [QPCR], 23S rRNA gene based) techniques, which allowed tracking of both culturable and total enterococcus populations. Inhibition of QPCR and DNA extraction efficiencies were accounted for in the interpretation of the QPCR results. The results provide evidence that enterococci may not be an appropriate indicator of enteric disease risk at recreational beaches subject to nonpoint sources of pollution.


Water Research | 2011

Impact of urbanization and agriculture on the occurrence of bacterial pathogens and stx genes in coastal waterbodies of central California

Sarah P. Walters; Anne Thebo; Alexandria B. Boehm

Fecal pollution enters coastal waters through multiple routes, many of which originate from land-based activities. Runoff from pervious and impervious land surfaces transports pollutants from land to sea and can cause impairment of coastal ocean waters. To understand how land use practices and water characteristics influence concentrations of fecal indicator bacteria (FIB) and pathogens in natural waters, fourteen coastal streams, rivers, and tidal lagoons, surrounded by variable land use and animal densities, were sampled every six weeks over two years (2008 & 2009). Fecal indicator bacteria (FIB; Escherichia coli and Enterococci) and Salmonella concentrations, the occurrence of Bacteroidales human, ruminant, and pig-specific fecal markers, E. coli O157:H7, and Shiga toxin (stx) genes present in E. coli, were measured. In addition, environmental and climatic variables (e.g., temperature, salinity, rainfall), as well as human and livestock population densities and land cover were quantified. Concentrations of FIB and Salmonella were correlated with each other, but the occurrence of host-specific Bacteroidales markers did not correlate with FIB or pathogens. FIB and Salmonella concentrations, as well as the occurrence of E. coli harboring stx genes, were positively associated with the fraction of the surrounding subwatershed that was urban, while the occurrence of E. coli O157:H7 was positively associated with the agricultural fraction. FIB and Salmonella concentrations were negatively correlated to salinity and temperature, and positively correlated to rainfall. Areal loading rates of FIB, Salmonella and E. coli O157:H7 to the coastal ocean were calculated for stream and river sites and varied with land cover, salinity, temperature, and rainfall. Results suggest that FIB and pathogen concentrations are influenced, in part, by their flux from the land, which is exacerbated during rainfall; once waterborne, bacterial persistence is affected by water temperature and salinity.


Journal of Applied Microbiology | 2010

Enterococcus species distribution among human and animal hosts using multiplex PCR.

Blythe A. Layton; Sarah P. Walters; Lilian H. Lam; Alexandria B. Boehm

Aims:  This study evaluated the use of Enterococcus species differentiation as a tool for microbial source tracking (MST) in recreational waters.


Environmental Microbiology | 2009

Survival and persistence of human and ruminant-specific faecal Bacteroidales in freshwater microcosms

Sarah P. Walters; Katharine G. Field

Amplification of host-specific markers from Bacteroidales faecal anaerobes can rapidly identify the source of faecal pollution. It is necessary to understand persistence and survival of these markers and marker cells, both to interpret quantitative source-tracking data, and to use such data to predict pathogen occurrence. We measured marker persistence and cell survival of two human (HF134, HF183) and two ruminant (CF128, CF193) faecal Bacteroidales markers, compared with Escherichia coli and enterococci. Freshwater microcosms were inoculated with fresh cattle or human faeces and incubated at 13 degrees C in natural light or darkness. Marker persistence was measured by polymerase chain reaction (PCR) and quantitative PCR. Survival of marker cells was measured by real-time quantitative PCR. There was no difference in persistence between the two human-specific Bacteroidales DNA markers in the light and dark microcosms. Cell survival profiles of the two human markers were also similar; both were significantly affected by light. Ruminant markers persisted and survived longer than human markers (14 versus 6 days respectively). CF193 decreased more rapidly than CF128, and light significantly affected CF128 but not CF193. These results support use of host-specific faecal Bacteroidales markers as indicators of recent faecal pollution, but suggest that caution is needed in interpreting quantitative results to indicate proportional contribution of different sources, as individual markers differ in their survival, persistence and response to environmental variables. The survival and persistence profiles for Bacteroidales markers are consistent with survival profiles for several faecal pathogens.


Environmental Science & Technology | 2010

Hands, Water, and Health: Fecal Contamination in Tanzanian Communities with Improved, Non-Networked Water Supplies

Amy J. Pickering; Jennifer Davis; Sarah P. Walters; Helena M. Horak; Daniel P. Keymer; Douglas Mushi; Rachelle Strickfaden; Joshua Chynoweth; Jessie Liu; Annalise G. Blum; Kirsten Rogers; Alexandria B. Boehm

Almost half of the worlds population relies on non-networked water supply services, which necessitates in-home water storage. It has been suggested that dirty hands play a role in microbial contamination of drinking water during collection, transport, and storage. However, little work has been done to evaluate quantitatively the association between hand contamination and stored water quality within households. This study measured levels of E. coli, fecal streptococci, and occurrence of the general Bacteroidales fecal DNA marker in source water, in stored water, and on hands in 334 households among communities in Dar es Salaam, Tanzania, where residents use non-networked water sources. Levels of fecal contamination on hands of mothers and children were positively correlated to fecal contamination in stored drinking water within households. Household characteristics associated with hand contamination included mothers educational attainment, use of an improved toilet, an infant in the household, and dissatisfaction with the quantity of water available for hygiene. In addition, fecal contamination on hands was associated with the prevalence of gastrointestinal and respiratory symptoms within a household. The results suggest that reducing fecal contamination on hands should be investigated as a strategy for improving stored drinking water quality and health among households using non-networked water supplies.


Applied and Environmental Microbiology | 2006

Persistence and Growth of Fecal Bacteroidales Assessed by Bromodeoxyuridine Immunocapture

Sarah P. Walters; Katharine G. Field

ABSTRACT Extraintestinal growth of fecal bacteria can impair accurate assessment of watershed health. Anaerobic fecal bacteria belonging to the order Bacteroidales are attractive candidates for fecal source tracking because they have host-specific distributions and do not grow well in the presence of high oxygen concentrations. Growth of general and human-specific fecal Bacteroidales marker organisms in environmental samples (sewage) and persistence of the corresponding genetic markers were investigated using bromodeoxyuridine (BrdU) DNA labeling and immunocapture, followed by PCR detection. Background amplification of unlabeled controls occasionally occurred when a high number of PCR cycles was used. By using fluorescent detection of PCR products obtained after 15 cycles, which was determined to be quantitative, we enriched for BrdU-labeled DNA and did not detect unlabeled DNA. By using pure cultures of Bacteroides vulgatus, the ability of Bacteroidales bacteria to take up and incorporate BrdU into nascent DNA was confirmed. Fecal Bacteroidales organisms took up and incorporated BrdU into DNA during growth. In sewage incubated aerobically at the in situ temperature, Bacteroidales genetic marker sequences persisted for at least 24 h and Bacteroidales fecal bacteria grew for up to 24 h as well. Detection by PCR using a low, quantitative cycle number decreased the sensitivity of the assay such that we were unable to detect fecal Bacteroidales human-specific marker sequences in unlabeled or BrdU-labeled fractions, even when fluorescent detection was used. Using 30 PCR cycles with unlabeled fractions, human-specific Bacteroidales sequences were detected, and they persisted for up to 24 h in sewage. These data support the utility of BrdU labeling and immunocapture followed by length heterogeneity PCR or fluorescent detection using low numbers of PCR cycles. However, this method may not be sensitive enough to identify cells that are present at low densities in aquatic environments.


Journal of Applied Microbiology | 2009

Distribution and diversity of the enterococcal surface protein (esp) gene in animal hosts and the Pacific coast environment.

Blythe A. Layton; Sarah P. Walters; Alexandria B. Boehm

Aims:  This study sought to evaluate the distribution of the enterococcal surface protein (esp) gene in Enterococcus faecium in the Pacific coast environment as well as the distribution and diversity of the gene in Northern California animal hosts.


Environmental Science & Technology | 2007

Detection of bacteroidales fecal indicators and the zoonotic pathogens E. coli O157:H7, salmonella, and campylobacter in river water

Sarah P. Walters; Victor P. J. Gannon; Katharine G. Field

Collaboration


Dive into the Sarah P. Walters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blythe A. Layton

Southern California Coastal Water Research Project

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge