Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah P. Young is active.

Publication


Featured researches published by Sarah P. Young.


Molecular Genetics and Metabolism | 2010

Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants

Priya S. Kishnani; Paula Goldenberg; Stephanie L. Dearmey; James H. Heller; Daniel K. Benjamin; Sarah P. Young; Deeksha Bali; Sue Ann Smith; Jennifer S. Li; Hanna Mandel; Dwight D. Koeberl; Amy S. Rosenberg; Yuan-Tsong Chen

Deficiency of acid alpha glucosidase (GAA) causes Pompe disease, which is usually fatal if onset occurs in infancy. Patients synthesize a non-functional form of GAA or are unable to form native enzyme. Enzyme replacement therapy with recombinant human GAA (rhGAA) prolongs survival in infantile Pompe patients but may be less effective in cross-reactive immunologic material (CRIM)-negative patients. We retrospectively analyzed the influence of CRIM status on outcome in 21 CRIM-positive and 11 CRIM-negative infantile Pompe patients receiving rhGAA. Patients were from the clinical setting and from clinical trials of rhGAA, were 6 months of age, were not invasively ventilated, and were treated with IV rhGAA at a cumulative or total dose of 20 or 40 mg/kg/2 weeks. Outcome measures included survival, invasive ventilator-free survival, cardiac status, gross motor development, development of antibodies to rhGAA, and levels of urinary Glc(4). Following 52 weeks of treatment, 6/11 (54.5%) CRIM-negative and 1/21 (4.8%) CRIM-positive patients were deceased or invasively ventilated (p<0.0001). By age 27.1 months, all CRIM-negative patients and 4/21 (19.0%) CRIM-positive patients were deceased or invasively ventilated. Cardiac function and gross motor development improved significantly more in the CRIM-positive group. IgG antibodies to rhGAA developed earlier and serotiters were higher and more sustained in the CRIM-negative group. CRIM-negative status predicted reduced overall survival and invasive ventilator-free survival and poorer clinical outcomes in infants with Pompe disease treated with rhGAA. The effect of CRIM status on outcome appears to be mediated by antibody responses to the exogenous protein.


Genetics in Medicine | 2012

Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease

Yoav H. Messinger; Nancy J. Mendelsohn; William J. Rhead; David Dimmock; Eli Hershkovitz; Michael Champion; Simon A. Jones; Rebecca A. Olson; Amy White; Cara Wells; Deeksha Bali; Laura E. Case; Sarah P. Young; Amy S. Rosenberg; Priya S. Kishnani

Purpose:Infantile Pompe disease resulting from a deficiency of lysosomal acid α-glucosidase (GAA) requires enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA). Cross-reactive immunologic material negative (CRIM-negative) Pompe patients develop high-titer antibody to the rhGAA and do poorly. We describe successful tolerance induction in CRIM-negative patients.Methods:Two CRIM-negative patients with preexisting anti-GAA antibodies were treated therapeutically with rituximab, methotrexate, and gammaglobulins. Two additional CRIM-negative patients were treated prophylactically with a short course of rituximab and methotrexate, in parallel with initiating rhGAA.Results:In both patients treated therapeutically, anti-rhGAA was eliminated after 3 and 19 months. All four patients are immune tolerant to rhGAA, off immune therapy, showing B-cell recovery while continuing to receive ERT at ages 36 and 56 months (therapeutic) and 18 and 35 months (prophylactic). All patients show clinical response to ERT, in stark contrast to the rapid deterioration of their nontolerized CRIM-negative counterparts.Conclusion:The combination of rituximab with methotrexate ± intravenous gammaglobulins (IVIG) is an option for tolerance induction of CRIM-negative Pompe to ERT when instituted in the naïve setting or following antibody development. It should be considered in other conditions in which antibody response to the therapeutic protein elicits robust antibody response that interferes with product efficacy.Genet Med 2012:14(1):135–142


Genetics in Medicine | 2012

The emerging phenotype of long-term survivors with infantile Pompe disease

Sean N. Prater; Suhrad G. Banugaria; Stephanie DeArmey; Eleanor G. Botha; Erin M. Stege; Laura E. Case; Harrison N. Jones; Chanika Phornphutkul; Raymond Y. Wang; Sarah P. Young; Priya S. Kishnani

Purpose:Enzyme replacement therapy with alglucosidase alfa for infantile Pompe disease has improved survival creating new management challenges. We describe an emerging phenotype in a retrospective review of long-term survivors.Methods:Inclusion criteria included ventilator-free status and age ≤6 months at treatment initiation, and survival to age ≥5 years. Clinical outcome measures included invasive ventilator-free survival and parameters for cardiac, pulmonary, musculoskeletal, gross motor, and ambulatory status; growth; speech, hearing, and swallowing; and gastrointestinal and nutritional status.Results:Eleven of 17 patients met study criteria. All were cross-reactive immunologic material-positive, alive, and invasive ventilator-free at most recent assessment, with a median age of 8.0 years (range: 5.4–12.0 years). All had marked improvements in cardiac parameters. Commonly present were gross motor weakness, motor speech deficits, sensorineural and/or conductive hearing loss, osteopenia, gastroesophageal reflux, and dysphagia with aspiration risk. Seven of 11 patients were independently ambulatory and four required the use of assistive ambulatory devices. All long-term survivors had low or undetectable anti-alglucosidase alfa antibody titers.Conclusion:Long-term survivors exhibited sustained improvements in cardiac parameters and gross motor function. Residual muscle weakness, hearing loss, risk for arrhythmias, hypernasal speech, dysphagia with risk for aspiration, and osteopenia were commonly observed findings.Genet Med 2012:14(9):800–810.


Molecular Genetics and Metabolism | 2011

Efficient analysis of urinary glycosaminoglycans by LC-MS/MS in mucopolysaccharidoses type I, II and VI

Christiane Auray-Blais; Patrick Bherer; René Gagnon; Sarah P. Young; Haoyue H. Zhang; Yan An; Joe T.R. Clarke; David S. Millington

Mucopolysaccharidoses (MPSs) are complex storage disorders caused by specific lysosomal enzyme deficiencies, resulting in the accumulation of glycosaminoglycans (GAGs) in urine, plasma, as well as in various tissues. We devised and validated a straightforward, but accurate and precise tandem mass spectrometry methodology coupled to high performance liquid chromatography (LC-MS/MS) for the quantification of GAGs in urine. The method is applicable to the investigation of patients with MPS I, II, and VI, by quantifying dermatan sulfate (DS) and heparan sulfate (HS) in urine. We analyzed urine samples from 28 MPS patients, aged 1 to 42 years, and 55 control subjects (41 days to 18 years old). Levels of DS and HS in urine from healthy controls of all ages were below the limit of quantification. The levels of DS and HS in urine from 6 treated patients with MPS I were lower than in 6 untreated patients in DS (0.7-45 vs 9.3-177 mg/mmol creat) and HS (0-123 mg/mmol creatinine vs 38-418 mg/mmol creatinine); similar results were obtained for 9 patients with MPS II and 7 patients with MPS VI. Analyses were performed on as little as 250 μL of urine. Methanolysis took 75 min per sample; the total analysis run time for each LC-MS/MS injection was 8 min. Results indicate that the method is applicable to a wide variety of situations in which high accuracy and precision are required, including the evaluation of the effectiveness of existing and emerging treatments.


Pediatric Research | 2003

Rare Disorders of Metabolism with Elevated Butyryl- and Isobutyryl-Carnitine Detected by Tandem Mass Spectrometry Newborn Screening

Dwight D. Koeberl; Sarah P. Young; Niels Gregersen; Jerry Vockley; Wendy Smith; Daniel K. Benjamin; Yan An; Susan D. Weavil; Shu H. Chaing; Deeksha Bali; Marie McDonald; Priya S. Kishnani; Yuan-Tsong Chen; David S. Millington

Tandem mass spectrometry was adopted for newborn screening by North Carolina in April 1999. Since then, three infants with short-chain acyl-CoA dehydrogenase (SCAD) and one with isobutyryl-CoA dehydrogenase deficiency were detected on the basis of elevated butyrylcarnitine/isobutyrylcarnitine (C4-carnitine) concentrations in newborn blood spots analyzed by tandem mass spectrometry. For three SCAD-deficient infants, biochemical evaluation included a plasma acylcarnitine profile with markedly elevated C4-carnitine, urine organic acid analysis with markedly elevated ethylmalonic and 2-methylsuccinic acids, and markedly elevated [U-13C]butyrylcarnitine concentrations in medium from fibroblasts incubated with [U-13C]palmitic acid and excess l-carnitine, consistent with classic SCAD deficiency. Two of three infants diagnosed with classic SCAD deficiency remained asymptomatic; however, the third infant presented with seizures and a cerebral infarct at 10 wk of age. All three infants had putatively inactivating mutations in both alleles of the SCAD gene. The highly elevated plasma C4-carnitine levels in the three infants detected by newborn screening tandem mass spectrometry differentiated them from infants and children who were homozygous or compound heterozygous for one of two SCAD gene susceptibility variations; for the latter group the C4-carnitine levels were normal. Isobutyryl-CoA dehydrogenase deficiency in a fourth infant was confirmed after isolated elevation of C4-carnitine in the acylcarnitine profile.


Clinica Chimica Acta | 2010

How well does urinary lyso-Gb3 function as a biomarker in Fabry disease?

Christiane Auray-Blais; Aimé Ntwari; Joe T.R. Clarke; David G. Warnock; João Paulo Oliveira; Sarah P. Young; David S. Millington; Daniel G. Bichet; Sandra Sirrs; Michael West; Robin Casey; Wuh-Liang Hwu; Joan Keutzer; X. Kate Zhang; René Gagnon

BACKGROUND Fabry disease is characterized by accumulation of glycosphingolipids, such as globotriaosylceramide (Gb(3)), in many tissues and body fluids. A novel plasma biomarker, globotriaosylsphingosine (lyso-Gb(3)), is increased in patients with the disease. Until now, lyso-Gb(3) was not detectable in urine, possibly because of the presence of interfering compounds. METHODS We undertook to: 1) characterize lyso-Gb(3) in urine; 2) develop a method to quantitate urinary lyso-Gb(3) by mass spectrometry; 3) evaluate urinary lyso-Gb(3) as a potential biomarker for Fabry disease; and 4) determine whether lyso-Gb(3) is an inhibitor of α-galactosidase A activity. We analyzed urinary lyso-Gb(3) from 83 Fabry patients and 77 healthy age-matched controls. RESULTS The intraday and interday bias and precision of the method were <15%. Increases in lyso-Gb(3)/creatinine correlated with the concentrations of Gb(3) (r(2)=0.43), type of mutations (p=0.0006), gender (p<0.0001) and enzyme replacement therapy status (p=0.0012). Urine from healthy controls contained no detectable lyso-Gb(3). Lyso-Gb(3) did not inhibit GLA activity in dried blood spots. Increased urinary excretion of lyso-Gb(3) of Fabry patients correlated well with a number of indicators of disease severity. CONCLUSION Lyso-Gb(3) is a reliable independent biomarker for clinically important characteristics of Fabry disease.


Genetics in Medicine | 2006

Comparison of maltose and acarbose as inhibitors of maltase-glucoamylase activity in assaying acid α-glucosidase activity in dried blood spots for the diagnosis of infantile Pompe disease

Haoyue Zhang; Helmut Kallwass; Sarah P. Young; Cortney Carr; Jian Dai; Priya S. Kishnani; David S. Millington; Joan Keutzer; Yuan-Tsong Chen; Deeksha Bali

Purpose: The study’s purpose was to compare acarbose and maltose as inhibitors of maltase-glucoamylase activity for determining acid α-glucosidase activity in dried blood spot specimens for early identification of patients with infantile Pompe disease, a severe form of acid α-glucosidase deficiency.Methods: Acid α-glucosidase activities in dried blood spot extracts were determined fluorometrically using the artificial substrate 4-methylumbelliferyl-α-D-pyranoside. Acarbose or maltose was used to inhibit maltase-glucoamylase, an enzyme present in polymorphonuclear neutrophils that contributes to the total α-glucosidase activity at acidic pH.Results: Complete discrimination between patients with proven infantile Pompe disease (n = 20), obligate heterozygotes (n = 16), and controls (n = 150) was achieved using 8 μmol/L acarbose as the inhibitor. Higher acarbose concentration (80 μmol/L) did not improve the assay. By using 4 mM maltose as the inhibitor, heterozygotes and patients were not completely separated. The results using acarbose compared well with those using the skin fibroblast assay in the same group of patients with proven infantile Pompe disease.Conclusion: Acid α-glucosidase activity measurements in dried blood spot extracts can reliably detect infantile Pompe disease in patients. The convenience of collecting and shipping dried blood specimens plus rapid turnaround time makes this assay an attractive alternative to established methods.


Molecular Therapy | 2010

Immunomodulatory Gene Therapy Prevents Antibody Formation and Lethal Hypersensitivity Reactions in Murine Pompe Disease

Baodong Sun; Michael D. Kulis; Sarah P. Young; Amy Hobeika; Songtao Li; Andrew Bird; Haoyue Zhang; Yifan Li; Timothy M. Clay; Wesley Burks; Priya S. Kishnani; Dwight D. Koeberl

Infantile Pompe disease progresses to a lethal cardiomyopathy in absence of effective treatment. Enzyme-replacement therapy (ERT) with recombinant human acid alpha-glucosidase (rhGAA) has been effective in most patients with Pompe disease, but efficacy was reduced by high-titer antibody responses. Immunomodulatory gene therapy with a low dose adeno-associated virus (AAV) vector (2 x 10(10) particles) containing a liver-specific regulatory cassette significantly lowered immunoglobin G (IgG), IgG1, and IgE antibodies to GAA in Pompe disease mice, when compared with mock-treated mice (P < 0.05). AAV-LSPhGAApA had the same effect on GAA-antibody production whether it was given prior to, following, or simultaneously with the initial GAA injection. Mice given AAV-LSPhGAApA had significantly less decrease in body temperature (P < 0.001) and lower anaphylactic scores (P < 0.01) following the GAA challenge. Mouse mast cell protease-1 (MMCP-1) followed the pattern associated with hypersensitivity reactions (P < 0.05). Regulatory T cells (Treg) were demonstrated to play a role in the tolerance induced by gene therapy as depletion of Treg led to an increase in GAA-specific IgG (P < 0.001). Treg depleted mice were challenged with GAA and had significantly stronger allergic reactions than mice given gene therapy without subsequent Treg depletion (temperature: P < 0.01; symptoms: P < 0.05). Ubiquitous GAA expression failed to prevent antibody formation. Thus, immunomodulatory gene therapy could provide adjunctive therapy in lysosomal storage disorders treated by enzyme replacement.


Muscle & Nerve | 2009

Screening for pompe disease using a rapid dried blood spot method: Experience of a clinical diagnostic laboratory

Jennifer L. Goldstein; Sarah P. Young; Mohita Changela; Gwen Dickerson; Haoyue Zhang; Jian Dai; Denise Peterson; David S. Millington; Priya S. Kishnani; Deeksha Bali

Pompe disease (acid maltase deficiency; glycogen storage disease type II) is caused by deficiency of the lysosomal enzyme acid alpha‐glucosidase (GAA). Our clinical laboratory began to offer a fluorometric dried blood spot (DBS)‐based GAA activity assay for Pompe disease in 2006 after the FDA approved GAA enzyme replacement therapy in April of that year. The purpose of this study was to examine the experience of our clinical laboratory in using this assay. Over a 2‐year period, we received samples for the DBS GAA assay from 891 patients referred for possible Pompe disease, of whom 111 (12.5%) patients across the disease spectrum who had results in the affected range. The majority of the patients were referred by neurologists and geneticists. When available, we correlated the results obtained through DBS GAA activity assay with the results from a second DBS, or a second tissue (cultured skin fibroblasts or muscle biopsy). In our experience, the DBS GAA activity assay provides a robust, rapid, and reliable first tier test for screening patients suspected of having Pompe disease. Muscle Nerve 40: 32–36, 2009


Molecular Therapy | 2008

Correction of Multiple Striated Muscles in Murine Pompe Disease Through Adeno-associated Virus–mediated Gene Therapy

Baodong Sun; Sarah P. Young; Ping Li; Chunhui Di; Talmage T. Brown; Maja Z. Salva; Songtao Li; Andrew Bird; Zhen Yan; Richard L. Auten; Stephen D. Hauschka; Dwight D. Koeberl

Glycogen storage disease type II (Pompe disease; MIM 232300) stems from the deficiency of acid alpha-glucosidase (GAA; acid maltase; EC 3.2.1.20), which primarily involves cardiac and skeletal muscles. An adeno-associated virus 2/8 (AAV2/8) vector containing the muscle creatine kinase (MCK) (CK1) reduced glycogen content by approximately 50% in the heart and quadriceps in GAA-knockout (GAA-KO) mice; furthermore, an AAV2/8 vector containing the hybrid alpha-myosin heavy chain enhancer-/MCK enhancer-promoter (MHCK7) cassette reduced glycogen content by >95% in heart and >75% in the diaphragm and quadriceps. Transduction with an AAV2/8 vector was higher in the quadriceps than in the gastrocnemius. An AAV2/9 vector containing the MHCK7 cassette corrected GAA deficiency in the distal hindlimb, and glycogen accumulations were substantially cleared by human GAA (hGAA) expression therein; however, the analogous AAV2/7 vector achieved much lower efficacy. Administration of the MHCK7-containing vectors significantly increased striated muscle function as assessed by increased Rotarod times at 18 weeks after injection, whereas the CK1-containing vector did not increase Rotarod performance. Importantly, type IIb myofibers in the extensor digitalis longus (EDL) were transduced, thereby correcting a myofiber type that is unresponsive to enzyme replacement therapy. In summary, AAV8 and AAV9-pseudotyped vectors containing the MHCK7 regulatory cassette achieved enhanced efficacy in Pompe disease mice.

Collaboration


Dive into the Sarah P. Young's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge