Sarah R. Dennison
University of Central Lancashire
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah R. Dennison.
Current Protein & Peptide Science | 2009
Frederick Harris; Sarah R. Dennison; David Andrew Phoenix
Anionic antimicrobial peptides / proteins (AAMPs) were first reported in the early 1980s and since then, have been established as an important part of the innate immune systems of vertebrates, invertebrates and plants. These peptides are active against bacteria, fungi, viruses and pests such as insects. AAMPs may be induced or expressed constitutively and in some cases, antimicrobial activity appears to be a secondary role for these peptides with other biological activities constituting their primary role. Structural characterization shows AAMPs to generally range in net charge from -1 to -7 and in length from 5 residues to circa 70 residues and for a number of these peptides, post-translational modifications are essential for antimicrobial activity. Membrane interaction appears key to the antimicrobial function of AAMPs and to facilitate these interactions, these peptides generally adopt amphiphilic structures. These architectures vary from the alpha-helical peptides of some amphibians to the cyclic cystine knot structures observed in some plant proteins. Some AAMPs appear to use metal ions to form cationic salt bridges with negatively charged components of microbial membranes, thereby facilitating interaction with their target organisms, but in many cases, the mechanisms underlying the antimicrobial action of these peptides are unclear or have not been elucidated. Here, we present an overview on current research into AAMPs, which suggests that these peptides are an untapped source of putative antimicrobial agents with novel mechanisms of action and possess potential for application in the medical and biotechnological arenas.
Protein and Peptide Letters | 2005
Sarah R. Dennison; James Wallace; Frederick Harris; David A. Phoenix
To facilitate microbial membrane invasion, amphiphilic α-helical antimicrobial peptides (α-AMPs) show a spatial segregation of hydrophobic and hydrophilic residues about the α-helical long axis. Here we discuss potential mechanisms by which these peptides are able to disrupt membrane structure and the structural characteristics, which are required for function.
Current Protein & Peptide Science | 2006
Sarah R. Dennison; Michelle Whittaker; Frederick Harris; David A. Phoenix
Cancer is a major cause of premature death and there is an urgent need for new anticancer agents with novel mechanisms of action. Here we review recent studies on a group of peptides that show much promise in this regard, exemplified by arthropod cecropins and amphibian magainins and aureins. These molecules are alpha-helical defence peptides, which show potent anticancer activity (alpha-ACPs) in addition to their established roles as antimicrobial factors and modulators of innate immune systems. Generally, alpha-ACPs exhibit selectivity for cancer and microbial cells primarily due to their elevated levels of negative membrane surface charge as compared to non-cancerous eukaryotic cells. The anticancer activity of alpha-ACPs normally occurs at micromolar levels but is not accompanied by significant levels of haemolysis or toxicity to other mammalian cells. Structure/function studies have established that architectural features of alpha-ACPs such as amphiphilicty levels and hydrophobic arc size are of major importance to the ability of these peptides to invade cancer cell membranes. In the vast majority of cases the mechanisms underlying such killing involves disruption of mitochondrial membrane integrity and/or that of the plasma membrane of the target tumour cells. Moreover, these mechanisms do not appear to proceed via receptor-mediated routes but are thought to be effected in most cases by the carpet/toroidal pore model and variants. Usually, these membrane interactions lead to loss of membrane integrity and cell death utilising apoptic and necrotic pathways. It is concluded that that alpha-ACPs are major contenders in the search for new anticancer drugs, underlined by the fact that a number of these peptides have been patented in this capacity.
Medicinal Research Reviews | 2013
Frederick Harris; Sarah R. Dennison; Jaipaul Singh; David A. Phoenix
Here, we review potential determinants of the anticancer efficacy of innate immune peptides (ACPs) for cancer cells. These determinants include membrane‐based factors, such as receptors, phosphatidylserine, sialic acid residues, and sulfated glycans, and peptide‐based factors, such as residue composition, sequence length, net charge, hydrophobic arc size, hydrophobicity, and amphiphilicity. Each of these factors may contribute to the anticancer action of ACPs, but no single factor(s) makes an overriding contribution to their overall selectivity and toxicity. Differences between the anticancer actions of ACPs seem to relate to different levels of interplay between these peptide and membrane‐based factors.
Biochemistry | 2011
Sarah R. Dennison; David A. Phoenix
To gain insight into the effects of amidation on the mechanism of membrane interaction, we studied two peptides modelin-5-COOH and modelin-5-CONH(2) and found they exhibit high surface activities (23.2 and 27.1 mN/m, respectively). When they were tested against Escherichia coli, amidation was seen to increase efficacy approximately 10-fold. Our results demonstrated that both peptides adopted low levels of α-helix in solution (<20%); however, in the presence of E. coli lipid extract, modelin-5-CONH(2) had a greater propensity (69%) than modelin-5-COOH (32%) to generate α-helical structure. The binding coefficient for both peptides was ∼10 μM, and the Hill coefficient approximated 1, suggesting that for both peptides the interactions with E. coli membranes were monomeric and comparable in strength. The peptides showed a clear preference for anionic lipid, with monolayer data showing that enhanced levels of helicity were associated with a greater pressure change (∼6 mN/m). Use of fluorescein-phosphatidylethanolamine showed the amidated version was able to generate greater levels of membrane disruption, which was confirmed by thermodynamic analysis. The data would imply that both peptides are able to initially bind to bilayer structures, but upon binding, the amidation stabilizes helix formation. This would be expected to help overcome a key rate-limiting step and generate higher local concentrations of peptide at the bilayer interface, which in turn would be predicted to increase efficacy.
Annals of the New York Academy of Sciences | 2006
Frederick Harris; Suman Biswas; Jaipaul Singh; Sarah R. Dennison; David A. Phoenix
Abstract: Type 2 diabetes mellitus (T2DM) can lead to death without treatment and it has been predicted that the condition will affect 215 million people worldwide by 2010. T2DM is a multifactorial disorder whose precise genetic causes and biochemical defects have not been fully elucidated, but at both levels, calpains appear to play a role. Positional cloning studies mapped T2DM susceptibility to CAPN10, the gene encoding the intracellular cysteine protease, calpain 10. Further studies have shown a number of noncoding polymorphisms in CAPN10 to be functionally associated with T2DM while the identification of coding polymorphisms, suggested that mutant calpain 10 proteins may also contribute to the disease. Here we review recent studies, which in addition to the latter enzyme, have linked calpain 5, calpain 3, and its splice variants, calpain 2 and calpain 1 to T2DM‐related metabolic pathways along with T2DM‐associated phenotypes, such as obesity and impaired insulin secretion, and T2DM‐related complications, such as epithelial dysfunction and diabetic cataract.
Protein and Peptide Letters | 2005
Sarah R. Dennison; Frederick Harris; David A. Phoenix
Oblique orientated α-helices are highly specialised protein structural elements that penetrate membranes at a shallow angle and are used to promote membrane destabilisation by a number of protein classes. Here, the use of extended hydrophobic moment methodology shows that the amphibian extrudates, aurein 1.2 and citropin 1.1, may use oblique orientated α-helices in their antimicrobial action and that such use may be shared by other antimicrobial peptides. This appears to be the first systematic analysis of these peptides for the possession of oblique orientated a-helical structure.
Biochimica et Biophysica Acta | 2013
Luis B. Oliveira; Ricardo A. Gomes; Dennis T. Yang; Sarah R. Dennison; Carlos Família; Ana Lages; Ana V. Coelho; Regina M. Murphy; David A. Phoenix; Alexandre Quintas
Several human neurodegenerative diseases such as Alzheimers disease, Parkinsons disease and Familial Amyloidotic Polyneuropathy, have long been associated with, structural and functional changes in disease related proteins leading to aggregation into amyloid fibrils. Such changes can be triggered by post-translational modifications. Methylglyoxal modifications have been shown to induce the formation of small and stable native-like aggregates in the case of the amyloidogenic proteins insulin and α-synuclein. However, the fundamental biophysical mechanism underlying such methylglyoxal-induced protein aggregation is not yet fully understood. In this work cytochrome c (Cyt c) was used as a model protein for the characterization of specific glycation targets and to study their impact on protein structure, stability, and ability to form native-like aggregates. Our results show that methylglyoxal covalently modifies Cyt c at a single residue and induces early conformational changes that lead to the formation of native-like aggregates. Furthermore, partially unfolded species are formed, but do not seem to be implicated in the aggregation process. This shows a clear difference from the amyloid fibril mechanisms which involve partially or totally unfolded intermediates. Equilibrium-unfolding experiments show that glycation strongly decreases Cyt c conformational stability, which is balanced with an increase of conformational stability upon aggregation. Data collected from analytical and spectroscopic techniques, along with kinetic analysis based on least-squares parameter fitting and statistical model discrimination are used to help to understand the driving force underlying glycation-induced native-like aggregation, and enable the proposal of a comprehensive thermodynamic and kinetic model for native-like aggregation of methylglyoxal glycated Cyt c.
The FASEB Journal | 2012
Frederick Harris; Sarah R. Dennison; David A. Phoenix
Host defense peptides (HDPs) are components of the innate immune system with activity against a broad range of microbes. In some cases, it appears that this activity is mediated by the ability of these peptides to permeabilize microbial membranes via the formation of amyloid associated structures. Recent evidence suggests that the naturally occurring function of the Aβ40 and Aβ42 peptides, which are causative agents of Alzheimers disease, maybe to serve as amyloidogenic HDPs. Here, it is hypothesized that the neurotoxicity of these peptides is related to aberrant use of their amyloid‐mediated antimicrobial mechanisms, which provides the as yet unexplored paradigm of a relationship among HDPs, neurodegenerative disorders, and other conditions that could contribute to their understanding and remediation.—Harris, F., Dennison, S. R., Phoenix, D. A. Aberrant action of amyloidogenic host defense peptides: a new paradigm to investigate neurodegenerative disorders? FASEB J. 26, 1776‐1781 (2012). www.fasebj.org
Progress in Lipid Research | 2015
David A. Phoenix; Frederick Harris; Manuela Mura; Sarah R. Dennison
Host defence peptides (HDPs) are antimicrobial agents produced by organisms across the prokaryotic and eukaryotic kingdoms. Many prokaryotes produce HDPs, which utilise lipid and protein receptors in the membranes of bacterial competitors to facilitate their antibacterial action and thereby survive in their niche environment. As a major example, it is well established that cinnamycin and duramycins from Streptomyces have a high affinity for phosphatidylethanolamine (PE) and exhibit activity against other Gram-positive organisms, such as Bacillus. In contrast, although eukaryotic HDPs utilise membrane interactive mechanisms to facilitate their antimicrobial activity, the prevailing view has long been that these mechanisms do not involve membrane receptors. However, this view has been recently challenged by reports that a number of eukaryotic HDPs such as plant cyclotides also use PE as a receptor to promote their antimicrobial activities. Here, we review current understanding of the mechanisms that underpin the use of PE as a receptor in the antimicrobial and other biological actions of HDPs and describe medical and biotechnical uses of these peptides, which range from tumour imaging and detection to inclusion in topical microbicidal gels to prevent the sexual transmission of HIV.