Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah R. Smith is active.

Publication


Featured researches published by Sarah R. Smith.


PLOS Biology | 2014

The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing.

Patrick J. Keeling; Fabien Burki; Heather M. Wilcox; Bassem Allam; Eric E. Allen; Linda A. Amaral-Zettler; E. Virginia Armbrust; John M. Archibald; Arvind K. Bharti; Callum J. Bell; Bank Beszteri; Kay D. Bidle; Lisa Campbell; David A. Caron; Rose Ann Cattolico; Jackie L. Collier; Kathryn J. Coyne; Simon K. Davy; Phillipe Deschamps; Sonya T. Dyhrman; Bente Edvardsen; Ruth D. Gates; Christopher J. Gobler; Spencer J. Greenwood; Stephanie M. Guida; Jennifer L. Jacobi; Kjetill S. Jakobsen; Erick R. James; Bethany D. Jenkins; Uwe John

Current sampling of genomic sequence data from eukaryotes is relatively poor, biased, and inadequate to address important questions about their biology, evolution, and ecology; this Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the worlds oceans.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth

Emily M. Trentacoste; Roshan P. Shrestha; Sarah R. Smith; Corine Glé; Aaron C. Hartmann; Mark Hildebrand; William H. Gerwick

Significance As global CO2 levels rise and fossil fuel abundance decreases, the development of alternative fuels becomes increasingly imperative. Biologically derived fuels, and specifically those from microalgae, are promising sources, but improvements throughout the production process are required to reduce cost. Increasing lipid yields in microalgae without compromising growth has great potential to improve economic feasibility. We report that disrupting lipid catabolism is a practical approach to increase lipid yields in microalgae without affecting growth or biomass. We developed transgenic strains through targeted metabolic engineering that show increased lipid accumulation, biomass, and lipid yields. The target enzyme’s ubiquity suggests that this approach can be applied broadly to improve the economic feasibility of algal biofuels in other groups of microalgae. Biologically derived fuels are viable alternatives to traditional fossil fuels, and microalgae are a particularly promising source, but improvements are required throughout the production process to increase productivity and reduce cost. Metabolic engineering to increase yields of biofuel-relevant lipids in these organisms without compromising growth is an important aspect of advancing economic feasibility. We report that the targeted knockdown of a multifunctional lipase/phospholipase/acyltransferase increased lipid yields without affecting growth in the diatom Thalassiosira pseudonana. Antisense-expressing knockdown strains 1A6 and 1B1 exhibited wild-type–like growth and increased lipid content under both continuous light and alternating light/dark conditions. Strains 1A6 and 1B1, respectively, contained 2.4- and 3.3-fold higher lipid content than wild-type during exponential growth, and 4.1- and 3.2-fold higher lipid content than wild-type after 40 h of silicon starvation. Analyses of fatty acids, lipid classes, and membrane stability in the transgenic strains suggest a role for this enzyme in membrane lipid turnover and lipid homeostasis. These results demonstrate that targeted metabolic manipulations can be used to increase lipid accumulation in eukaryotic microalgae without compromising growth.


Biofuels | 2012

The place of diatoms in the biofuels industry

Mark Hildebrand; Aubrey K. Davis; Sarah R. Smith; Jesse C. Traller; Raffaela Abbriano

In spite of attractive attributes, diatoms are underrepresented in research and literature related to the development of microalgal biofuels. Diatoms are highly diverse and have substantial evolutionarily-based differences in cellular organization and metabolic processes relative to chlorophytes. Diatoms have tremendous ecological success, with typically higher productivity than other algal classes, which may relate to cellular factors discussed in this review. Diatoms can accumulate lipid equivalently or to a greater extent than other algal classes, and can rapidly induce triacylglycerol under Si limitation, avoiding the detrimental effects on photosynthesis, gene expression and protein content associated with N limitation. Diatoms have been grown on production scales for aquaculture for decades, produce value-added products and are amenable to omic and genetic manipulation approaches. In this article, we highlight beneficial attributes and address potential concerns of diatoms as biofuels research and production organisms, and encourage a greater emphasis on their development in the biofuels arena.


Current Opinion in Chemical Biology | 2013

Metabolic and cellular organization in evolutionarily diverse microalgae as related to biofuels production

Mark Hildebrand; Raffaela Abbriano; Juergen Polle; Jesse C. Traller; Emily M. Trentacoste; Sarah R. Smith; Aubrey K. Davis

Microalgae are among the most diverse organisms on the planet, and as a result of symbioses and evolutionary selection, the configuration of core metabolic networks is highly varied across distinct algal classes. The differences in photosynthesis, carbon fixation and processing, carbon storage, and the compartmentation of cellular and metabolic processes are substantial and likely to transcend into the efficiency of various steps involved in biofuel molecule production. By highlighting these differences, we hope to provide a framework for comparative analyses to determine the efficiency of the different arrangements or processes. This sets the stage for optimization on the based on information derived from evolutionary selection to diverse algal classes and to synthetic systems.


Nature Reviews Microbiology | 2017

Probing the evolution, ecology and physiology of marine protists using transcriptomics

David A. Caron; Harriet Alexander; Andrew E. Allen; John M. Archibald; E. Virginia Armbrust; Charles Bachy; Callum J. Bell; Arvind K. Bharti; Sonya T. Dyhrman; Stephanie M. Guida; Karla B. Heidelberg; Jonathan Z. Kaye; Julia Metzner; Sarah R. Smith; Alexandra Z. Worden

Protists, which are single-celled eukaryotes, critically influence the ecology and chemistry of marine ecosystems, but genome-based studies of these organisms have lagged behind those of other microorganisms. However, recent transcriptomic studies of cultured species, complemented by meta-omics analyses of natural communities, have increased the amount of genetic information available for poorly represented branches on the tree of eukaryotic life. This information is providing insights into the adaptations and interactions between protists and other microorganisms and macroorganisms, but many of the genes sequenced show no similarity to sequences currently available in public databases. A better understanding of these newly discovered genes will lead to a deeper appreciation of the functional diversity and metabolic processes in the ocean. In this Review, we summarize recent developments in our understanding of the ecology, physiology and evolution of protists, derived from transcriptomic studies of cultured strains and natural communities, and discuss how these novel large-scale genetic datasets will be used in the future.


New Phytologist | 2016

Transcript level coordination of carbon pathways during silicon starvation‐induced lipid accumulation in the diatom Thalassiosira pseudonana

Sarah R. Smith; Corine Glé; Raffaela Abbriano; Jesse C. Traller; Aubrey K. Davis; Emily M. Trentacoste; Maria Vernet; Andrew E. Allen; Mark Hildebrand

Summary Diatoms are one of the most productive and successful photosynthetic taxa on Earth and possess attributes such as rapid growth rates and production of lipids, making them candidate sources of renewable fuels. Despite their significance, few details of the mechanisms used to regulate growth and carbon metabolism are currently known, hindering metabolic engineering approaches to enhance productivity. To characterize the transcript level component of metabolic regulation, genome‐wide changes in transcript abundance were documented in the model diatom Thalassiosira pseudonana on a time‐course of silicon starvation. Growth, cell cycle progression, chloroplast replication, fatty acid composition, pigmentation, and photosynthetic parameters were characterized alongside lipid accumulation. Extensive coordination of large suites of genes was observed, highlighting the existence of clusters of coregulated genes as a key feature of global gene regulation in T. pseudonana. The identity of key enzymes for carbon metabolic pathway inputs (photosynthesis) and outputs (growth and storage) reveals these clusters are organized to synchronize these processes. Coordinated transcript level responses to silicon starvation are probably driven by signals linked to cell cycle progression and shifts in photophysiology. A mechanistic understanding of how this is accomplished will aid efforts to engineer metabolism for development of algal‐derived biofuels.


PLOS Genetics | 2016

Transcriptional Orchestration of the Global Cellular Response of a Model Pennate Diatom to Diel Light Cycling under Iron Limitation.

Sarah R. Smith; Jeroen T. F. Gillard; Adam B. Kustka; John P. McCrow; Jonathan H. Badger; Hong Zheng; Ashley M. New; Chris L. Dupont; Toshihiro Obata; Alisdair R. Fernie; Andrew E. Allen

Environmental fluctuations affect distribution, growth and abundance of diatoms in nature, with iron (Fe) availability playing a central role. Studies on the response of diatoms to low Fe have either utilized continuous (24 hr) illumination or sampled a single time of day, missing any temporal dynamics. We profiled the physiology, metabolite composition, and global transcripts of the pennate diatom Phaeodactylum tricornutum during steady-state growth at low, intermediate, and high levels of dissolved Fe over light:dark cycles, to better understand fundamental aspects of genetic control of physiological acclimation to growth under Fe-limitation. We greatly expand the catalog of genes involved in the low Fe response, highlighting the importance of intracellular trafficking in Fe-limited diatoms. P. tricornutum exhibited transcriptomic hallmarks of slowed growth leading to prolonged periods of cell division/silica deposition, which could impact biogeochemical carbon sequestration in Fe-limited regions. Light harvesting and ribosome biogenesis transcripts were generally reduced under low Fe while transcript levels for genes putatively involved in the acquisition and recycling of Fe were increased. We also noted shifts in expression towards increased synthesis and catabolism of branched chain amino acids in P. tricornutum grown at low Fe whereas expression of genes involved in central core metabolism were relatively unaffected, indicating that essential cellular function is protected. Beyond the response of P. tricornutum to low Fe, we observed major coordinated shifts in transcript control of primary and intermediate metabolism over light:dark cycles which contribute to a new view of the significance of distinctive diatom pathways, such as mitochondrial glycolysis and the ornithine-urea cycle. This study provides new insight into transcriptional modulation of diatom physiology and metabolism across light:dark cycles in response to Fe availability, providing mechanistic understanding for the ability of diatoms to remain metabolically poised to respond quickly to Fe input and revealing strategies underlying their ecological success.


Biotechnology for Biofuels | 2016

Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype

Jesse C. Traller; Shawn J. Cokus; David Adrian Lopez; Olga Gaidarenko; Sarah R. Smith; John P. McCrow; Sean D. Gallaher; Sheila Podell; Michael J. Thompson; Orna Cook; Marco Morselli; Artur Jaroszewicz; Eric E. Allen; Andrew E. Allen; Sabeeha S. Merchant; Matteo Pellegrini; Mark Hildebrand

BackgroundImprovement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom Cyclotella cryptica, which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for large-scale production of biofuel and bioproducts, such as omega-3 fatty acids.ResultsWe sequenced the nuclear genome and methylome of this oleaginous diatom to identify the genetic traits that enable substantial accumulation of triacylglycerol. The genome is comprised of highly methylated repetitive sequence, which does not significantly change under silicon starved lipid induction, and data further suggests the primary role of DNA methylation is to suppress DNA transposition. Annotation of pivotal glycolytic, lipid metabolism, and carbohydrate degradation processes reveal an expanded enzyme repertoirexa0inxa0C. cryptica that would allow for an increased metabolic capacity toward triacylglycerol production. Identification of previously unidentified genes, including those involved in carbon transport and chitin metabolism, provide potential targets for genetic manipulation of carbon flux to further increase its lipid phenotype. New genetic tools were developed, bringing this organism on a par with other microalgae in terms of genetic manipulation and characterization approaches.ConclusionsFunctional annotation and detailed cross-species comparison of key carbon rich processes in C. cryptica highlights the importance of enzymatic subcellular compartmentation for regulation of carbon flux, which is often overlooked in photosynthetic microeukaryotes. The availability of the genome sequence, as well as advanced genetic manipulation tools enable further development of this organism for deployment in large-scale production systems.


The Plant Cell | 2017

Nitrate Reductase Knockout Uncouples Nitrate Transport from Nitrate Assimilation and Drives Repartitioning of Carbon Flux in a Model Pennate Diatom

James McCarthy; Sarah R. Smith; John P. McCrow; Maxine Tan; Hong Zheng; Karen Beeri; Robyn Roth; Christiane Lichtlé; Ursula Goodenough; Chris Bowler; Cristopher L Dupont; Andrew E. Allen

Genetic inactivation of diatom nitrate reductase abolishes nitrate assimilation but not nitrate uptake and results in transcriptional activation of nitrate storage and triacylglycerol biosynthesis pathways. The ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO3−). To investigate the cellular and genetic basis of diatom NO3− assimilation, we generated a knockout in the nitrate reductase gene (NR-KO) of the model pennate diatom Phaeodactylum tricornutum. In NR-KO cells, N-assimilation was abolished although NO3− transport remained intact. Unassimilated NO3− accumulated in NR-KO cells, resulting in swelling and associated changes in biochemical composition and physiology. Elevated expression of genes encoding putative vacuolar NO3− chloride channel transporters plus electron micrographs indicating enlarged vacuoles suggested vacuolar storage of NO3−. Triacylglycerol concentrations in the NR-KO cells increased immediately following the addition of NO3−, and these increases coincided with elevated gene expression of key triacylglycerol biosynthesis components. Simultaneously, induction of transcripts encoding proteins involved in thylakoid membrane lipid recycling suggested more abrupt repartitioning of carbon resources in NR-KO cells compared with the wild type. Conversely, ribosomal structure and photosystem genes were immediately deactivated in NR-KO cells following NO3− addition, followed within hours by deactivation of genes encoding enzymes for chlorophyll biosynthesis and carbon fixation and metabolism. N-assimilation pathway genes respond uniquely, apparently induced simultaneously by both NO3− replete and deplete conditions.


Methods of Molecular Biology | 2016

Applications of Imaging Flow Cytometry for Microalgae

Mark Hildebrand; Aubrey K. Davis; Raffaela Abbriano; Haley R. Pugsley; Jesse C. Traller; Sarah R. Smith; Roshan P. Shrestha; Orna Cook; Eva L. Sánchez-Alvarez; Kalpana Manandhar-Shrestha; Benjamin Alderete

The ability to image large numbers of cells at high resolution enhances flow cytometric analysis of cells and cell populations. In particular, the ability to image intracellular features adds a unique aspect to analyses, and can enable correlation between molecular phenomena resulting in alterations in cellular phenotype. Unicellular microalgae are amenable to high-throughput analysis to capture the diversity of cell types in natural samples, or diverse cellular responses in clonal populations, especially using imaging cytometry. Using examples from our laboratory, we review applications of imaging cytometry, specifically using an Amnis(®) ImageStream(®)X instrument, to characterize photosynthetic microalgae. Some of these examples highlight advantages of imaging flow cytometry for certain research objectives, but we also include examples that would not necessarily require imaging and could be performed on a conventional cytometer to demonstrate other concepts in cytometric evaluation of microalgae. We demonstrate the value of these approaches for (1) analysis of populations, (2) documentation of cellular features, and (3) analysis of gene expression.

Collaboration


Dive into the Sarah R. Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew E. Allen

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Raffaela Abbriano

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesse C. Traller

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar

Arvind K. Bharti

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar

Callum J. Bell

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar

David A. Caron

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric E. Allen

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge