Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah R. Walker is active.

Publication


Featured researches published by Sarah R. Walker.


Journal of Clinical Investigation | 2011

The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24– stem cell–like breast cancer cells in human tumors

Lauren L.C. Marotta; Vanessa Almendro; Andriy Marusyk; Michail Shipitsin; Janina Schemme; Sarah R. Walker; Noga Bloushtain-Qimron; Jessica Kim; Sibgat Choudhury; Reo Maruyama; Zhenhua Wu; Mithat Gonen; Laura Mulvey; Marina Bessarabova; Sung Jin Huh; Serena J. Silver; So Young Kim; So Yeon Park; Hee Eun Lee; Karen S. Anderson; Andrea L. Richardson; Tatiana Nikolskaya; Yuri Nikolsky; X. Shirley Liu; David E. Root; William C. Hahn; David A. Frank; Kornelia Polyak

Intratumor heterogeneity is a major clinical problem because tumor cell subtypes display variable sensitivity to therapeutics and may play different roles in progression. We previously characterized 2 cell populations in human breast tumors with distinct properties: CD44+CD24- cells that have stem cell-like characteristics, and CD44-CD24+ cells that resemble more differentiated breast cancer cells. Here we identified 15 genes required for cell growth or proliferation in CD44+CD24- human breast cancer cells in a large-scale loss-of-function screen and found that inhibition of several of these (IL6, PTGIS, HAS1, CXCL3, and PFKFB3) reduced Stat3 activation. We found that the IL-6/JAK2/Stat3 pathway was preferentially active in CD44+CD24- breast cancer cells compared with other tumor cell types, and inhibition of JAK2 decreased their number and blocked growth of xenografts. Our results highlight the differences between distinct breast cancer cell types and identify targets such as JAK2 and Stat3 that may lead to more specific and effective breast cancer therapies.


Nature Genetics | 2008

Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling

Elen Griffith; Sarah R. Walker; Carol-Anne Martin; Paola Vagnarelli; Tom Stiff; Bertrand Vernay; Nouriya Al Sanna; Anand Saggar; B.C.J. Hamel; William C. Earnshaw; Penny A. Jeggo; Andrew P. Jackson; Mark O'Driscoll

Large brain size is one of the defining characteristics of modern humans. Seckel syndrome (MIM 210600), a disorder of markedly reduced brain and body size, is associated with defective ATR-dependent DNA damage signaling. Only a single hypomorphic mutation of ATR has been identified in this genetically heterogeneous condition. We now report that mutations in the gene encoding pericentrin (PCNT)—resulting in the loss of pericentrin from the centrosome, where it has key functions anchoring both structural and regulatory proteins—also cause Seckel syndrome. Furthermore, we find that cells of individuals with Seckel syndrome due to mutations in PCNT (PCNT-Seckel) have defects in ATR-dependent checkpoint signaling, providing the first evidence linking a structural centrosomal protein with DNA damage signaling. These findings also suggest that other known microcephaly genes implicated in either DNA repair responses or centrosomal function may act in common developmental pathways determining human brain and body size.


Nature Genetics | 2013

Whole-exome sequencing identifies a recurrent NAB2-STAT6 fusion in solitary fibrous tumors.

Juliann Chmielecki; Aimee M. Crago; Mara Rosenberg; Rachael O'Connor; Sarah R. Walker; Lauren Ambrogio; Daniel Auclair; Aaron McKenna; Michael C. Heinrich; David A. Frank; Matthew Meyerson

Solitary fibrous tumors (SFTs) are rare mesenchymal tumors. Here, we describe the identification of a NAB2-STAT6 fusion from whole-exome sequencing of 17 SFTs. Analysis in 53 tumors confirmed the presence of 7 variants of this fusion transcript in 29 tumors (55%), representing a lower bound for fusion frequency at this locus and suggesting that the NAB2-STAT6 fusion is a distinct molecular feature of SFTs.


Blood | 2011

The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors

Erik A. Nelson; Sarah R. Walker; Ellen Weisberg; Michal Bar-Natan; Rosemary Barrett; Laurie B. Gashin; Shariya Terrell; Josephine L. Klitgaard; Loredana Santo; Martha R. Addorio; Benjamin L. Ebert; James D. Griffin; David A. Frank

The transcription factor STAT5 is an essential mediator of the pathogenesis of chronic myelogenous leukemia (CML). In CML, the BCR/ABL fusion kinase causes the constitutive activation of STAT5, thereby driving the expression of genes promoting survival. BCR/ABL kinase inhibitors have become the mainstay of therapy for CML, although CML cells can develop resistance through mutations in BCR/ABL. To overcome this problem, we used a cell-based screen to identify drugs that inhibit STAT-dependent gene expression. Using this approach, we identified the psychotropic drug pimozide as a STAT5 inhibitor. Pimozide decreases STAT5 tyrosine phosphorylation, although it does not inhibit BCR/ABL or other tyrosine kinases. Furthermore, pimozide decreases the expression of STAT5 target genes and induces cell cycle arrest and apoptosis in CML cell lines. Pimozide also selectively inhibits colony formation of CD34(+) bone marrow cells from CML patients. Importantly, pimozide induces similar effects in the presence of the T315I BCR/ABL mutation that renders the kinase resistant to presently available inhibitors. Simultaneously inhibiting STAT5 with pimozide and the kinase inhibitors imatinib or nilotinib shows enhanced effects in inhibiting STAT5 phosphorylation and in inducing apoptosis. Thus, targeting STAT5 may be an effective strategy for the treatment of CML and other myeloproliferative diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of ERBB2

Heidi Greulich; Bethany Kaplan; Philipp Mertins; Tzu-Hsiu Chen; Kumiko Tanaka; Cai-Hong Yun; Xiaohong Zhang; Se-Hoon Lee; Jeonghee Cho; Lauren Ambrogio; Rachel G. Liao; Marcin Imielinski; Shantanu Banerji; Alice H. Berger; Michael S. Lawrence; Jinghui Zhang; Nam H. Pho; Sarah R. Walker; Wendy Winckler; Gad Getz; David A. Frank; William C. Hahn; Michael J. Eck; D. R. Mani; Jacob D. Jaffe; Steven A. Carr; Kwok-Kin Wong; Matthew Meyerson

We assessed somatic alleles of six receptor tyrosine kinase genes mutated in lung adenocarcinoma for oncogenic activity. Five of these genes failed to score in transformation assays; however, novel recurring extracellular domain mutations of the receptor tyrosine kinase gene ERBB2 were potently oncogenic. These ERBB2 extracellular domain mutants were activated by two distinct mechanisms, characterized by elevated C-terminal tail phosphorylation or by covalent dimerization mediated by intermolecular disulfide bond formation. These distinct mechanisms of receptor activation converged upon tyrosine phosphorylation of cellular proteins, impacting cell motility. Survival of Ba/F3 cells transformed to IL-3 independence by the ERBB2 extracellular domain mutants was abrogated by treatment with small-molecule inhibitors of ERBB2, raising the possibility that patients harboring such mutations could benefit from ERBB2-directed therapy.


Nature Genetics | 2011

Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome.

Louise S. Bicknell; Sarah R. Walker; Anna Klingseisen; Tom Stiff; Andrea Leitch; Claudia Kerzendorfer; Carol Anne Martin; Patricia Yeyati; Nouriya Al Sanna; Michael B. Bober; Diana Johnson; Carol A. Wise; Andrew P. Jackson; Mark O'Driscoll; Penny A. Jeggo

Studies into disorders of extreme growth failure (for example, Seckel syndrome and Majewski osteodysplastic primordial dwarfism type II) have implicated fundamental cellular processes of DNA damage response signaling and centrosome function in the regulation of human growth. Here we report that mutations in ORC1, encoding a subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. We establish that these mutations disrupt known ORC1 functions including pre-replicative complex formation and origin activation. ORC1 deficiency perturbs S-phase entry and S-phase progression. Additionally, we show that Orc1 depletion in zebrafish is sufficient to markedly reduce body size during rapid embryonic growth. Our data suggest a model in which ORC1 mutations impair replication licensing, slowing cell cycle progression and consequently impeding growth during development, particularly at times of rapid proliferation. These findings establish a novel mechanism for the pathogenesis of microcephalic dwarfism and show a surprising but important developmental impact of impaired origin licensing.


Molecular Cancer Research | 2009

Reciprocal effects of STAT5 and STAT3 in breast cancer.

Sarah R. Walker; Erik A. Nelson; Lihua Zou; Mousumi Chaudhury; Sabina Signoretti; Andrea L. Richardson; David A. Frank

Breast cancer is often associated with inappropriate activation of transcription factors involved in normal mammary development. Two related transcription factors, signal transducer and activator of transcription (STAT) 5 and STAT3, play important and distinct roles in mammary development and both can be activated in breast cancer. However, the relative contribution of these STATs to mammary tumorigenesis is unknown. We have found that primary human breast tumors displaying activation of both STATs are more differentiated than those with STAT3 activation alone and display more favorable prognostic characteristics. To understand this difference, we have analyzed the effect of these STATs on gene regulation and phenotype of mammary carcinoma cells. STAT5 and STAT3 mediate opposing effects on several key target genes, with STAT5 exerting a dominant role. Using a model system of paired breast cancer cell lines, we found that coactivation of STAT5 and STAT3 leads to decreased proliferation and increased sensitivity to the chemotherapeutic drugs paclitaxel and vinorelbine compared with cells that have only STAT3 activation. Thus, STAT5 can modify the effects of STAT3 from the level of gene expression to cellular phenotype and analysis of the activation state of both STAT5 and STAT3 may provide important diagnostic and prognostic information in breast cancer. (Mol Cancer Res 2009;7(6):966–76)


Blood | 2008

Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3.

Erik A. Nelson; Sarah R. Walker; Alicia Kepich; Laurie B. Gashin; Teru Hideshima; Hiroshi Ikeda; Dharminder Chauhan; Kenneth C. Anderson; David A. Frank

Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Nifuroxazide inhibits the constitutive phosphorylation of STAT3 in MM cells by reducing Jak kinase autophosphorylation, and leads to down-regulation of the STAT3 target gene Mcl-1. Nifuroxazide causes a decrease in viability of primary myeloma cells and myeloma cell lines containing STAT3 activation, but not normal peripheral blood mononuclear cells. Although bone marrow stromal cells provide survival signals to myeloma cells, nifuroxazide can overcome this survival advantage. Reflecting the interaction of STAT3 with other cellular pathways, nifuroxazide shows enhanced cytotoxicity when combined with either the histone deacetylase inhibitor depsipeptide or the MEK inhibitor UO126. Therefore, using a mechanistic-based screen, we identified the clinically relevant drug nifuroxazide as a potent inhibitor of STAT signaling that shows cytotoxicity against myeloma cells that depend on STAT3 for survival.


Oncogene | 2007

STAT5 represses BCL6 expression by binding to a regulatory region frequently mutated in lymphomas

Sarah R. Walker; Erik A. Nelson; David A. Frank

Deregulated expression of BCL6 is a pathogenic event in many lymphomas. BCL6 blocks cellular differentiation by repressing transcription of its target genes, and this may promote tumorigenesis. Conversely, the transcription factor signal transducers and activators of transcription (STAT)5 promotes differentiation in many systems. STAT5 upregulates a number of genes repressed by BCL6, raising the possibility that STAT5 and BCL6 have opposing roles in transcriptional regulation. Therefore, we sought to determine the effects of STAT5 activation on BCL6 expression and function. We found that activation of STAT5 downregulates BCL6 expression in B-lymphoma cells and other hematopoietic cell lines. We identified two potential STAT-binding regions in the first exon and first intron of BCL6 that fell within regions of high inter-species homology, suggesting conservation of regulatory function. STAT5 can bind inducibly and regulate transcription at one of these regions, identifying BCL6 as a STAT5 target gene. Additionally, STAT5-mediated downregulation of BCL6 results in loss of BCL6 repression of its target genes, confirming that STAT5 is a negative regulator of BCL6 function. The STAT5 responsive region of the BCL6 gene is mutated frequently in B-cell lymphomas, suggesting that loss of the repressive effects of STAT5 on BCL6 might contribute to the pathogenesis of these cancers.


Science Signaling | 2014

STAT3 Induction of miR-146b Forms a Feedback Loop to Inhibit the NF-κB to IL-6 Signaling Axis and STAT3-Driven Cancer Phenotypes

Michael Xiang; Nicolai Juul Birkbak; Vida Vafaizadeh; Sarah R. Walker; Jennifer E. Yeh; Suhu Liu; Yasmin Kroll; Mark P. Boldin; Konstantin D. Taganov; Bernd Groner; Andrea L. Richardson; David A. Frank

An epigenetic modification prevents the production of a tumor-suppressing and anti-inflammatory microRNA in receptor-negative breast cancers. Micro-Mediated Feedback Chronic inflammation and interleukin-6 (IL-6), which is produced in response to nuclear factor κB (NF-κB) signaling, is a proinflammatory cytokine associated with cancer. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor stimulated in response to IL-6 and its receptor-bound kinases from the Janus kinase (JAK) family. Xiang et al. found that STAT3 stimulated expression of the gene encoding the microRNA miR-146b, which inhibited NF-κB–mediated induction of IL-6 to prevent a proinflammatory response in normal breast epithelial cells. However, promoter methylation reduced miR-146b expression in breast cancer cell lines and patient tissue, and its expression correlated with survival in patients with estrogen receptor– or triple-negative breast cancer. In addition to inhibiting STAT3 activity and cell migration and invasion, introduction of a miR-146b mimic was as cytotoxic as pharmacological inhibition of JAK to triple-negative breast cancer cells in culture, and combination therapy in cells was additive. The findings suggest that therapies reintroducing or stimulating miR-146b production may be beneficial to patients with tumors with high STAT3 activity. Interleukin-6 (IL-6)–mediated activation of signal transducer and activator of transcription 3 (STAT3) is a mechanism by which chronic inflammation can contribute to cancer and is a common oncogenic event. We discovered a pathway, the loss of which is associated with persistent STAT3 activation in human cancer. We found that the gene encoding the tumor suppressor microRNA miR-146b is a direct STAT3 target gene, and its expression was increased in normal breast epithelial cells but decreased in tumor cells. Methylation of the miR-146b promoter, which inhibited STAT3-mediated induction of expression, was increased in primary breast cancers. Moreover, we found that miR-146b inhibited nuclear factor κB (NF-κB)–dependent production of IL-6, subsequent STAT3 activation, and IL-6/STAT3–driven migration and invasion in breast cancer cells, thereby establishing a negative feedback loop. In addition, higher expression of miR-146b was positively correlated with patient survival in breast cancer subtypes with increased IL6 expression and STAT3 phosphorylation. Our results identify an epigenetic mechanism of crosstalk between STAT3 and NF-κB relevant to constitutive STAT3 activation in malignancy and the role of inflammation in oncogenesis.

Collaboration


Dive into the Sarah R. Walker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea L. Richardson

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Michal Bar-Natan

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge