Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah R. Walmsley is active.

Publication


Featured researches published by Sarah R. Walmsley.


Nature | 2013

Succinate is an inflammatory signal that induces IL-1β through HIF-1α

G. M. Tannahill; Anne M. Curtis; J. Adamik; Eva M. Palsson-McDermott; Anne F. McGettrick; Gautam Goel; Christian Frezza; N. J. Bernard; Beth Kelly; Niamh Foley; Liang Zheng; A. Gardet; Z. Tong; S. S. Jany; Sinead C. Corr; M. Haneklaus; B. E. Caffrey; Kerry A. Pierce; Sarah R. Walmsley; F. C. Beasley; Eoin P. Cummins; Nizet; M. Whyte; Cormac T. Taylor; Hening Lin; S. L. Masters; Eyal Gottlieb; V. P. Kelly; Clary B. Clish; P. E. Auron

Macrophages activated by the Gram-negative bacterial product lipopolysaccharide switch their core metabolism from oxidative phosphorylation to glycolysis. Here we show that inhibition of glycolysis with 2-deoxyglucose suppresses lipopolysaccharide-induced interleukin-1β but not tumour-necrosis factor-α in mouse macrophages. A comprehensive metabolic map of lipopolysaccharide-activated macrophages shows upregulation of glycolytic and downregulation of mitochondrial genes, which correlates directly with the expression profiles of altered metabolites. Lipopolysaccharide strongly increases the levels of the tricarboxylic-acid cycle intermediate succinate. Glutamine-dependent anerplerosis is the principal source of succinate, although the ‘GABA (γ-aminobutyric acid) shunt’ pathway also has a role. Lipopolysaccharide-induced succinate stabilizes hypoxia-inducible factor-1α, an effect that is inhibited by 2-deoxyglucose, with interleukin-1β as an important target. Lipopolysaccharide also increases succinylation of several proteins. We therefore identify succinate as a metabolite in innate immune signalling, which enhances interleukin-1β production during inflammation.


Journal of Experimental Medicine | 2005

Hypoxia-induced neutrophil survival is mediated by HIF-1α-dependent NF-κB activity

Sarah R. Walmsley; Cristin G. Print; Neda Farahi; Carole Peyssonnaux; Randall S. Johnson; Thorsten Cramer; Anastasia Sobolewski; Alison M. Condliffe; Andrew S. Cowburn; Nicola Johnson; Edwin R. Chilvers

Neutrophils are key effector cells of the innate immune response and are required to migrate and function within adverse microenvironmental conditions. These inflammatory sites are characterized by low levels of oxygen and glucose and high levels of reductive metabolites. A major regulator of neutrophil functional longevity is the ability of these cells to undergo apoptosis. We examined the mechanism by which hypoxia causes an inhibition of neutrophil apoptosis in human and murine neutrophils. We show that neutrophils possess the hypoxia-inducible factor (HIF)-1α and factor inhibiting HIF (FIH) hydroxylase oxygen-sensing pathway and using HIF-1α–deficient myeloid cells demonstrate that HIF-1α is directly involved in regulating neutrophil survival in hypoxia. Gene array, TaqMan PCR, Western blotting, and oligonucleotide binding assays identify NF-κB as a novel hypoxia-regulated and HIF-dependent target, with inhibition of NF-κB by gliotoxin or parthenolide resulting in the abrogation of hypoxic survival. In addition, we identify macrophage inflammatory protein-1β as a novel hypoxia-induced neutrophil survival factor.


Blood | 2011

Activation of hypoxia-inducible factor-1α (Hif-1α) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model

Philip M. Elks; Fredericus J. M. van Eeden; Giles Dixon; Constantino Carlos Reyes-Aldasoro; Philip W. Ingham; Moira K. B. Whyte; Sarah R. Walmsley; Stephen A. Renshaw

The oxygen-sensing transcription factor hypoxia-inducible factor-1α (HIF-1α) plays a critical role in the regulation of myeloid cell function. The mechanisms of regulation are not well understood, nor are the phenotypic consequences of HIF modulation in the context of neutrophilic inflammation. Species conservation across higher metazoans enables the use of the genetically tractable and transparent zebrafish (Danio rerio) embryo to study in vivo resolution of the inflammatory response. Using both a pharmacologic approach known to lead to stabilization of HIF-1α, and selective genetic manipulation of zebrafish HIF-1α homologs, we sought to determine the roles of HIF-1α in inflammation resolution. Both approaches reveal that activated Hif-1α delays resolution of inflammation after tail transection in zebrafish larvae. This delay can be replicated by neutrophil-specific Hif activation and is a consequence of both reduced neutrophil apoptosis and increased retention of neutrophils at the site of tissue injury. Hif-activated neutrophils continue to patrol the injury site during the resolution phase, when neutrophils would normally migrate away. Site-directed mutagenesis of Hif in vivo reveals that hydroxylation of Hif-1α by prolyl hydroxylases critically regulates the Hif pathway in zebrafish neutrophils. Our data demonstrate that Hif-1α regulates neutrophil function in complex ways during inflammation resolution in vivo.


Science Translational Medicine | 2014

A Zebrafish Compound Screen Reveals Modulation of Neutrophil Reverse Migration as an Anti-Inflammatory Mechanism

Anne L. Robertson; Geoffrey R. Holmes; Aleksandra Bojarczuk; Joseph Burgon; Catherine A. Loynes; Myriam Chimen; Amy Sawtell; Bashar Hamza; Joseph Willson; Sarah R. Walmsley; Sean R. Anderson; Mark Coles; Stuart N. Farrow; Roberto Solari; Simon Jones; Lynne R. Prince; Daniel Irimia; G. Ed Rainger; Visakan Kadirkamanathan; Moira K. B. Whyte; Stephen A. Renshaw

The proresolution therapeutic tanshinone IIA drives inflammation resolution by reverse migration. An Anti-Inflammatory Fish Story Inflammation is one way the body tries to protect itself from injury and begin the healing process. However, as with any good thing, too much inflammation can be harmful, causing bystander injuries to healthy tissue. Hence, there is an active mechanism to resolve inflammation; failed resolution contributes to diseases of chronic inflammation such as atherosclerosis and rheumatoid arthritis. Now, Robertson et al. use a zebrafish screening platform to identify new means of resolving inflammation. The authors used a transgenic zebrafish model of sterile tissue injury to screen potential factors involved in inflammation resolution. They found that tanshinone IIA, which is derived from a Chinese medicinal herb, had proresolving activity by both inducing neutrophil apoptosis and promoting reverse migration of neutrophils. What’s more, these effects were not limited to their zebrafish model but held true in human neutrophils. Although efficacy remains to be tested in actual patients, these data support “fishing” for new drug candidates for resolving inflammation. Diseases of failed inflammation resolution are common and largely incurable. Therapeutic induction of inflammation resolution is an attractive strategy to bring about healing without increasing susceptibility to infection. However, therapeutic targeting of inflammation resolution has been hampered by a lack of understanding of the underlying molecular controls. To address this drug development challenge, we developed an in vivo screen for proresolution therapeutics in a transgenic zebrafish model. Inflammation induced by sterile tissue injury was assessed for accelerated resolution in the presence of a library of known compounds. Of the molecules with proresolution activity, tanshinone IIA, derived from a Chinese medicinal herb, potently induced inflammation resolution in vivo both by induction of neutrophil apoptosis and by promoting reverse migration of neutrophils. Tanshinone IIA blocked proinflammatory signals in vivo, and its effects are conserved in human neutrophils, supporting a potential role in treating human inflammation and providing compelling evidence of the translational potential of this screening strategy.


Nature | 2015

MET is required for the recruitment of anti-tumoural neutrophils

Veronica Finisguerra; Giusy Di Conza; Mario Di Matteo; Jens Serneels; Sandra Costa; A. A. Roger Thompson; Els Wauters; Sarah R. Walmsley; Hans Prenen; Zvi Granot; Andrea Casazza; Massimiliano Mazzone

Mutations or amplification of the MET proto-oncogene are involved in the pathogenesis of several tumours, which rely on the constitutive engagement of this pathway for their growth and survival. However, MET is expressed not only by cancer cells but also by tumour-associated stromal cells, although its precise role in this compartment is not well characterized. Here we show that MET is required for neutrophil chemoattraction and cytotoxicity in response to its ligand hepatocyte growth factor (HGF). Met deletion in mouse neutrophils enhances tumour growth and metastasis. This phenotype correlates with reduced neutrophil infiltration to both the primary tumour and metastatic sites. Similarly, Met is necessary for neutrophil transudation during colitis, skin rash or peritonitis. Mechanistically, Met is induced by tumour-derived tumour necrosis factor (TNF)-α or other inflammatory stimuli in both mouse and human neutrophils. This induction is instrumental for neutrophil transmigration across an activated endothelium and for inducible nitric oxide synthase production upon HGF stimulation. Consequently, HGF/MET-dependent nitric oxide release by neutrophils promotes cancer cell killing, which abates tumour growth and metastasis. After systemic administration of a MET kinase inhibitor, we prove that the therapeutic benefit of MET targeting in cancer cells is partly countered by the pro-tumoural effect arising from MET blockade in neutrophils. Our work identifies an unprecedented role of MET in neutrophils, suggests a potential ‘Achilles’ heel’ of MET-targeted therapies in cancer, and supports the rationale for evaluating anti-MET drugs in certain inflammatory diseases.


Journal of Clinical Investigation | 2011

Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice

Sarah R. Walmsley; Edwin R. Chilvers; Alfred A.R. Thompson; Kathryn Vaughan; Helen M. Marriott; Lisa C. Parker; Gary Shaw; Selina Parmar; Martin F. Schneider; Ian Sabroe; David H. Dockrell; Marta Milo; Cormac T. Taylor; Randall S. Johnson; Christopher W. Pugh; Peter J. Ratcliffe; Patrick H. Maxwell; Peter Carmeliet; Moira K. B. Whyte

The regulation of neutrophil lifespan by induction of apoptosis is critical for maintaining an effective host response and preventing excessive inflammation. The hypoxia-inducible factor (HIF) oxygen-sensing pathway has a major effect on the susceptibility of neutrophils to apoptosis, with a marked delay in cell death observed under hypoxic conditions. HIF expression and transcriptional activity are regulated by the oxygen-sensitive prolyl hydroxylases (PHD1-3), but the role of PHDs in neutrophil survival is unclear. We examined PHD expression in human neutrophils and found that PHD3 was strongly induced in response to hypoxia and inflammatory stimuli in vitro and in vivo. Using neutrophils from mice deficient in Phd3, we demonstrated a unique role for Phd3 in prolonging neutrophil survival during hypoxia, distinct from other hypoxia-associated changes in neutrophil function and metabolic activity. Moreover, this selective defect in neutrophil survival occurred in the presence of preserved HIF transcriptional activity but was associated with upregulation of the proapoptotic mediator Siva1 and loss of its binding target Bcl-xL. In vivo, using an acute lung injury model, we observed increased levels of neutrophil apoptosis and clearance in Phd3-deficient mice compared with WT controls. We also observed reduced neutrophilic inflammation in an acute mouse model of colitis. These data support what we believe to be a novel function for PHD3 in regulating neutrophil survival in hypoxia and may enable the development of new therapeutics for inflammatory disease.


Journal of Immunology | 2011

Hypoxia Selectively Inhibits Respiratory Burst Activity and Killing of Staphylococcus aureus in Human Neutrophils

Naomi N. McGovern; Andrew S. Cowburn; Linsey Porter; Sarah R. Walmsley; Charlotte Summers; Alfred A.R. Thompson; Sadia Anwar; Lisa C. Willcocks; Moira K. B. Whyte; Alison M. Condliffe; Edwin R. Chilvers

Neutrophils play a central role in the innate immune response and a critical role in bacterial killing. Most studies of neutrophil function have been conducted under conditions of ambient oxygen, but inflamed sites where neutrophils operate may be extremely hypoxic. Previous studies indicate that neutrophils sense and respond to hypoxia via the ubiquitous prolyl hydroxylase/hypoxia-inducible factor pathway and that this can signal for enhanced survival. In the current study, human neutrophils were shown to upregulate hypoxia-inducible factor (HIF)-1α–dependent gene expression under hypoxic incubation conditions (3 kPa), with a consequent substantial delay in the onset of apoptosis. Despite this, polarization and chemotactic responsiveness to IL-8 and fMLP were entirely unaffected by hypoxia. Similarly, hypoxia did not diminish the ability of neutrophils to phagocytose serum-opsonized heat-killed streptococci. Of the secretory functions examined, IL-8 generation was preserved and elastase release was enhanced by hypoxia. Hypoxia did, however, cause a major reduction in respiratory burst activity induced both by the soluble agonist fMLP and by ingestion of opsonized zymosan, without affecting expression of the NADPH oxidase subunits. Critically, this reduction in respiratory burst activity under hypoxia was associated with a significant defect in the killing of Staphylococcus aureus. In contrast, killing of Escherichia coli, which is predominantly oxidase independent, was fully preserved under hypoxia. In conclusion, these studies suggest that although the NADPH oxidase-dependent bacterial killing mechanism may be compromised by hypoxia, neutrophils overall appear extremely well adapted to operate successfully under severely hypoxic conditions.


Journal of Immunology | 2008

Subversion of a Lysosomal Pathway Regulating Neutrophil Apoptosis by a Major Bacterial Toxin, Pyocyanin

Lynne R. Prince; Stephen Bianchi; Kathryn M. Vaughan; Martin A. Bewley; Helen M. Marriott; Sarah R. Walmsley; Graham W. Taylor; David J. Buttle; Ian Sabroe; David H. Dockrell; Moira K. B. Whyte

Neutrophils undergo rapid constitutive apoptosis that is accelerated following bacterial ingestion as part of effective immunity, but is also accelerated by bacterial exotoxins as a mechanism of immune evasion. The paradigm of pathogen-driven neutrophil apoptosis is exemplified by the Pseudomonas aeruginosa toxic metabolite, pyocyanin. We previously showed pyocyanin dramatically accelerates neutrophil apoptosis both in vitro and in vivo, impairs host defenses, and favors bacterial persistence. In this study, we investigated the mechanisms of pyocyanin-induced neutrophil apoptosis. Pyocyanin induced early lysosomal dysfunction, shown by altered lysosomal pH, within 15 min of exposure. Lysosomal disruption was followed by mitochondrial membrane permeabilization, caspase activation, and destabilization of Mcl-1. Pharmacological inhibitors of a lysosomal protease, cathepsin D (CTSD), abrogated pyocyanin-induced apoptosis, and translocation of CTSD to the cytosol followed pyocyanin treatment and lysosomal disruption. A stable analog of cAMP (dibutyryl cAMP) impeded the translocation of CTSD and prevented the destabilization of Mcl-1 by pyocyanin. Thus, pyocyanin activated a coordinated series of events dependent upon lysosomal dysfunction and protease release, the first description of a bacterial toxin using a lysosomal cell death pathway. This may be a pathological pathway of cell death to which neutrophils are particularly susceptible, and could be therapeutically targeted to limit neutrophil death and preserve host responses.


PLOS Pathogens | 2013

Hypoxia Inducible Factor Signaling Modulates Susceptibility to Mycobacterial Infection via a Nitric Oxide Dependent Mechanism

Philip M. Elks; Sabrina Brizee; Michiel van der Vaart; Sarah R. Walmsley; Fredericus J. M. van Eeden; Stephen A. Renshaw; Annemarie H. Meijer

Tuberculosis is a current major world-health problem, exacerbated by the causative pathogen, Mycobacterium tuberculosis (Mtb), becoming increasingly resistant to conventional antibiotic treatment. Mtb is able to counteract the bactericidal mechanisms of leukocytes to survive intracellularly and develop a niche permissive for proliferation and dissemination. Understanding of the pathogenesis of mycobacterial infections such as tuberculosis (TB) remains limited, especially for early infection and for reactivation of latent infection. Signaling via hypoxia inducible factor α (HIF-α) transcription factors has previously been implicated in leukocyte activation and host defence. We have previously shown that hypoxic signaling via stabilization of Hif-1α prolongs the functionality of leukocytes in the innate immune response to injury. We sought to manipulate Hif-α signaling in a well-established Mycobacterium marinum (Mm) zebrafish model of TB to investigate effects on the hosts ability to combat mycobacterial infection. Stabilization of host Hif-1α, both pharmacologically and genetically, at early stages of Mm infection was able to reduce the bacterial burden of infected larvae. Increasing Hif-1α signaling enhanced levels of reactive nitrogen species (RNS) in neutrophils prior to infection and was able to reduce larval mycobacterial burden. Conversely, decreasing Hif-2α signaling enhanced RNS levels and reduced bacterial burden, demonstrating that Hif-1α and Hif-2α have opposing effects on host susceptibility to mycobacterial infection. The antimicrobial effect of Hif-1α stabilization, and Hif-2α reduction, were demonstrated to be dependent on inducible nitric oxide synthase (iNOS) signaling at early stages of infection. Our findings indicate that induction of leukocyte iNOS by stabilizing Hif-1α, or reducing Hif-2α, aids the host during early stages of Mm infection. Stabilization of Hif-1α therefore represents a potential target for therapeutic intervention against tuberculosis.


Journal of Immunology | 2010

Distinct Cell Death Programs in Monocytes Regulate Innate Responses Following Challenge with Common Causes of Invasive Bacterial Disease

Steve Webster; Marc Daigneault; Martin A. Bewley; Julie A. Preston; Helen M. Marriott; Sarah R. Walmsley; Robert C. Read; Moira K. B. Whyte; David H. Dockrell

Peripheral blood monocytes represent the rapid response component of mononuclear phagocyte host defense, generating vigorous but finite antibacterial responses. We investigated the fate of highly purified primary human monocytes following phagocytosis of different bacteria. Exposure to high bacterial loads resulted in rapid loss of cell viability and decreased functional competence. Cell death typically involved classical apoptosis. Exposure to high numbers of Escherichia coli and Klebsiella pneumoniae induced nonapoptotic death with loss of cell membrane integrity, marked disruption of phagolysosomes, and caspase-1 activation, while a subset of cells also released caspase-1–regulated extracellular traps. Classical apoptosis increased if extracellular bacterial replication was reduced and decreased if intracellular ATP levels were reduced during these infections. Both classical apoptosis and the alternative forms of cell death allowed monocytes, whose functional competence was exhausted, to downregulate reactive oxygen species and proinflammatory cytokine responses. In contrast, sustained stimulation of glycolytic metabolism and mitochondrial oxidative phosphorylation, with associated hypoxia inducible factor-1α upregulation, maintained intracellular ATP levels and prolonged monocyte functional longevity, as assessed by maintenance of phagocytosis, reactive oxygen species production, and proinflammatory cytokine generation. Monocyte innate responses to bacteria are short-lived and are limited by an intrinsic program of apoptosis, a response that is subverted by overwhelming infection with E. coli and K. pneumoniae or bacterial stimulation of cell metabolism. In this regard, the fate of monocytes following bacterial challenge more closely resembles neutrophils than macrophages.

Collaboration


Dive into the Sarah R. Walmsley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Sabroe

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge