Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Reed is active.

Publication


Featured researches published by Sarah Reed.


Biology of Reproduction | 2015

Applying SWATH Mass Spectrometry to Investigate Human Cervicovaginal Fluid During the Menstrual Cycle

Kanchan Vaswani; Keith Ashman; Sarah Reed; Carlos Salomon; Suchismita Sarker; José Antonio Arraztoa V; Alejandra Perez-Sepulveda; Sebastian E. Illanes; David Kvaskoff; Murray D. Mitchell; Gregory E. Rice

ABSTRACT Inherent interindividual and intraindividual variation in the length of the menstrual cycle limits the accuracy of predicting days of peak fertility. To improve detection of days of peak fertility, a more detailed understanding of longitudinal changes in cervicovaginal fluid (CVF) biomarkers during the normal menstrual cycle is needed. The aim of this study, therefore, was to characterize longitudinal changes in CVF proteins during the menstrual cycle using a quantitative, data-independent acquisition mass spectrometry approach. Six serial samples were collected from women (n = 10) during the menstrual cycle. Samples were obtained at two time points for each phase of the cycle: early and late preovulatory, ovulatory, and postovulatory. Information-dependent acquisition (IDA) of mass spectra from all individual CVF samples was initially performed and identified 278 total proteins. Samples were then pooled by time of collection (n = 6 pools) and analyzed using IDA and information-independent acquisition (Sequential Windowed Acquisition of All Theoretical Mass Spectra [SWATH]). The IDA library generated contained 176 statistically significant protein identifications (P < 0.000158). The variation in the relative abundance of CVF proteins across the menstrual cycle was established by comparison with the SWATH profile against the IDA library. Using time-series, pooled samples obtained from 10 women, quantitative data were obtained by SWATH analysis for 43 CVF proteins. Of these proteins, 28 displayed significant variation in relative abundance during the menstrual cycle (assessed by ANOVA). Statistical significant changes in the relative expression of CVF proteins during preovulatory, ovulatory, and postovulatory phases of menstrual cycle were identified. The data obtained may be of utility not only in elucidating underlying physiological mechanisms but also as clinically useful biomarkers of fertility status.


Journal of Dairy Science | 2016

Plasma exosome profiles from dairy cows with divergent fertility phenotypes.

Murray D. Mitchell; Katherin Scholz-Romero; Sarah Reed; Hassendrini Peiris; Y.Q. Koh; S. Meier; C.G. Walker; C.R. Burke; J.R. Roche; Gregory E. Rice; Carlos Salomon

Cell-to-cell communication in physiological and pathological conditions may be influenced by neighboring cells, distant tissues, or local environmental factors. Exosomes are specific subsets of extracellular vesicles that internalize and deliver their content to near and distant sites. Exosomes may play a role in the maternal-embryo crosstalk vital for the recognition and maintenance of a pregnancy; however, their role in dairy cow reproduction has not been established. This study aimed to characterize the exosome profile in the plasma of 2 strains of dairy cow with divergent fertility phenotypes. Plasma was obtained and characterized on the basis of genetic ancestry as fertile (FERT; <23% North American genetics, New Zealand Holstein-Friesian strain, n=8) or subfertile (SUBFERT; >92% North American genetics, North American Holstein-Friesian strain, n=8). Exosomes were isolated by differential and buoyant density centrifugation and characterized by size distribution (nanoparticle tracking analysis, NanoSight NS500, NanoSight Ltd., Amesbury, UK), the presence of CD63 (Western blot), and their morphology (electron microscopy). The total number of exosomes was determined by quantifying the immunoreactive CD63 (ExoELISA kit, System Biosciences), and the protein content established by mass spectrometry. Enriched exosome fractions were identified as cup-shape vesicles with diameters around 100 nm and positive for the CD63 marker. The concentration of exosomes was 50% greater in FERT cows. Mass spectrometry identified 104 and 117 proteins in FERT and SUBFERT cows, of which 23 and 36 were unique, respectively. Gene ontology analysis revealed enrichment for proteins involved in immunomodulatory processes and cell-to-cell communication. Although the role of exosomes in dairy cow reproduction remains to be elucidated, their quantification and content in models with divergent fertility phenotypes could provide novel information to support both physiological and genetic approaches to improving dairy cow fertility.


Scientific Reports | 2018

The use of SWATH to analyse the dynamic changes of bacterial proteome of carbapanemase-producing Escherichia coli under antibiotic pressure

Hanna E. Sidjabat; Jolene Gien; David Kvaskoff; Keith Ashman; Kanchan Vaswani; Sarah Reed; Ross P. McGeary; David L. Paterson; Amanda Bordin; Gerhard Schenk

Antibiotic resistance associated with the clinically significant carbapenemases KPC, NDM and OXA-48 in Enterobacteriaceae is emerging as worldwide. In Australia, IMP-producing Enterobacteriaceae are the most prevalent carbapenemase-producing Enterobacteriaceae (CPE). Genomic characteristics of such CPE are well described, but the corresponding proteome is poorly characterised. We have thus developed a method to analyse dynamic changes in the proteome of CPE under antibiotic pressure. Specifically, we have investigated the effect of meropenem at sub-lethal concentrations to develop a better understanding of how antibiotic pressure leads to resistance. Escherichia coli strains producing either NDM-, IMP- or KPC-type carbapenemases were included in this study, and their proteomes were analysed in growth conditions with or without meropenem. The most significant difference in the bacterial proteomes upon the addition of meropenem was triggered amongst NDM-producers and to a lower extent amongst KPC-producers. In particular, HU DNA-binding proteins, the GroEL/GroES chaperonin complex and GrpE proteins were overexpressed. These proteins may thus contribute to the better adaptability of NDM- and KPC-producers to meropenem. A significant meropenem-induced increase in the expression of the outer membrane protein A was only observed in IMP-producers, thus demonstrating that carbapenemase-mediated resistance relies on far more complex mechanisms than simple inactivation of the antibiotic.


Journal of Dairy Science | 2017

Effect of circulating exosomes from transition cows on Madin-Darby bovine kidney cell function

M.A. Crookenden; C.G. Walker; Hassendrini N. Peiris; Yong Q. Koh; Fatema B. Almughlliq; Kanchan Vaswani; Sarah Reed; A. Heiser; Juan J. Loor; J.K. Kay; S. Meier; S.S. Donkin; Alan Murray; V.S.R. Dukkipati; J.R. Roche; Murray D. Mitchell

The greatest risk of metabolic and infectious disease in dairy cows is during the transition from pregnancy to lactating (i.e., the transition period). The objective of this experiment was to determine the effects of extracellular vesicles (microvesicles involved in cell-to-cell signaling) isolated from transition cows on target cell function. We previously identified differences in the protein profiles of exosomes isolated from cows divergent in metabolic health status. Therefore, we hypothesized that these exosomes would affect target tissues differently. To investigate this, 2 groups of cows (n = 5/group) were selected based on the concentration of β-hydroxybutyrate and fatty acids in plasma and triacylglycerol concentration in liver at wk 1 and 2 postcalving. Cows with high concentrations of β-hydroxybutyrate, fatty acids, and triacylglycerol were considered at increased risk of clinical disease during the transition period (high-risk group; n = 5) and were compared with cows that had low concentrations of the selected health indicators (low-risk group; n = 5). At 2 time points during the transition period (postcalving at wk 1 and 4), blood was sampled and plasma exosomes were isolated from the high-risk and low-risk cows. The exosomes were applied at concentrations of 10 and 1 µg/mL to 5 × 103 Madin-Darby bovine kidney cells grown to 50% confluence in 96-well plates. Results indicate a numerical increase in cell proliferation when exosomes from high-risk cows were applied compared with those from low-risk cows. Consistent with an effect on cell proliferation, quantitative reverse transcriptase PCR indicated a trend for upregulation of 3 proinflammatory genes (granulocyte colony-stimulating factor, ciliary neurotrophic factor, and CD27 ligand) with the application of high-risk exosomes, which are involved in cellular growth and survival. Proteomic analysis indicated 2 proteins in the low-risk group that were not identified in the high-risk group (endoplasmin and catalase), which may also be indicative of the metabolic state of origin. It is likely that the metabolic state of the transition cow affects cellular function through exosomal messaging; however, more in-depth research into cross-talk between exosomes and target cells is required to determine whether exosomes influence Madin-Darby bovine kidney cells in this manner.


Journal of Microbiological Methods | 2016

Detection of carbapenemase activity in Enterobacteriaceae using LC-MS/MS in comparison with the neo-rapid CARB kit using direct visual assessment and colorimetry

Charlotte A. Huber; Hanna E. Sidjabat; Hosam M. Zowawi; David Kvaskoff; Sarah Reed; John F. McNamara; K. L. McCarthy; Patrick N. A. Harris; Benjamin Toh; Alexander M. Wailan; David L. Paterson

It has been described that the sensitivity of the Carba NP test may be low in the case of OXA-48-like carbapenamases and mass spectrometry based methods as well as a colorimetry based method have been described as alternatives. We evaluated 84 Enterobacteriaceae isolates including 31 OXA-48-like producing isolates and 13 isolates that produced either an imipenemase (IMP; n=8), New Delhi metallo-β-lactamase (NDM; n=3), or Klebsiella pneumoniae carbapenemase (KPC; n=2), as well as 40 carbapenemase negative Enterobacteriaceae isolates. We used the Neo-Rapid CARB kit, assessing the results with the unaided eye and compared it with a colorimetric approach. Furthermore, we incubated the isolates in growth media with meropenem and measured the remaining meropenem after one and 2h of incubation, respectively, using liquid chromatography tandem mass spectrometry (LC-MS/MS). Whilst all carbapenemase producing isolates with the exception of the OXA-244 producer tested positive for both the Neo-rapid CARB test using the unaided eye or colorimetry, and the 13 isolates producing either IMP, NDM or KPC hydrolysed the meropenem in the media almost completely after 2h of incubation, the 31 OXA-48-like producing isolates exhibited very variable hydrolytic activity when incubated in growth media with meropenem. In our study, the Neo-Rapid CARB test yielded a sensitivity of 98% for both the traditional and the colorimetric approach with a specificity of 95% and 100% respectively. Our results indicate that the Neo-Rapid CARB test may have use for the detection of OXA-48 type carbapenemases and that it may be particularly important to ensure bacterial lysis for the detection of these weaker hydrolysers.


Reproductive Biology | 2018

Eicosanoid pathway expression in bovine endometrial epithelial and stromal cells in response to lipopolysaccharide, interleukin 1 beta, and tumor necrosis factor alpha

Fatema B. Almughlliq; Yong Q. Koh; Hassendrini N. Peiris; Kanchan Vaswani; Buddhika J. Arachchige; Sarah Reed; Murray D. Mitchell

During endometrial inflammation, bovine endometrium responds by increasing the production of pro-inflammatory mediators, such as interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), and eicosanoids. The purpose of this study was to establish and characterize an in vitro model of endometrial inflammation using bovine endometrial epithelial (bEEL) and stromal (bCSC) cell lines. We evaluated the effects of the infectious agent (bacterial lipopolysaccharide; LPS) and pro-inflammatory mediators (IL-1β and TNFα) on eicosanoid biosynthesis pathway gene expression and production by bEEL and bCSC cells. Based on concentration-response experiments, the optimal concentrations for responses were 1 μg/mL LPS, 10 ng/mL IL-1β and 50 ng/mL TNFα. Real-time PCR results show that there was an upregulation of relative mRNA expression of PTGS2 when bEEL and bCSC were treated with LPS, IL-1β and TNFα. An increase in PTGES3 expression was observed when bEEL cells were treated with LPS and IL-1β and PTGES2 when treated with IL-1β. In bCSC cells, FAAH relative mRNA was decreased upon treatments. Rate of production of PGE2, PGF2α, PGE2-EA and PGF2α-EA were also determined using liquid chromatography tandem mass spectrometry. Our results show that eicosanoid production was increased in both cell lines in response to LPS, IL-1β, and TNFα. We suggest that the characteristics of bEEL and bCSC cell lines mimic the physiological responses found in mammals with endometrial infection, making them excellent in vitro models for intrauterine environment studies.


Journal of Dairy Science | 2018

Proteome profiling of exosomes derived from plasma of heifers with divergent genetic merit for fertility

Yong Q. Koh; Hassendrini N. Peiris; Kanchan Vaswani; Fatema B. Almughlliq; S. Meier; C.R. Burke; J.R. Roche; Charlotte B. Reed; Buddhika J. Arachchige; Sarah Reed; Murray D. Mitchell

The current study evaluated exosomes isolated from plasma of heifers bred to have high or low fertility through developing extreme diversity in fertility breeding values, however, key animal traits (e.g., body weight, milk production, and percentage of North American genetics) remained similar between the 2 groups. The exosomes were isolated by a combined ultracentrifugation and size exclusion chromatography approach and characterized by their size distribution (nanoparticle tracking analysis), morphology (transmission electron microscopy), and presence of exosomal markers (immunoblotting). In addition, a targeted mass spectrometry approach was used to confirm the presence of 2 exosomal markers, tumor susceptibility gene 101 and flotillin 1. The number of exosomes from plasma of high fertility heifers was greater compared with low fertility heifers. Interestingly, the exosomal proteomic profile, evaluated using mass spectrometry, identified 89 and 116 proteins in the high and low fertility heifers respectively, of which 4 and 31 were unique, respectively. These include proteins associated with specific biological processes and molecular functions of fertility. Most notably, the tetratricopeptide repeat protein 41-related, glycodelin, and kelch-like protein 8 were identified in plasma exosomes unique to the low fertility heifers. These proteins are suggested to play a role in reproduction; however, the role of these proteins in dairy cow reproduction remains to be elucidated. Their identification underscores the potential for proteins within exosomes to provide information on the fertility status and physiological condition of the cow. This may potentially lead to the development of prognostic tools and interventions to improving dairy cow fertility.


Reproductive Biology and Endocrinology | 2016

Characterization of exosomal release in bovine endometrial intercaruncular stromal cells

Yong Q. Koh; Hassendrini N. Peiris; Kanchan Vaswani; Sarah Reed; Gregory E. Rice; Carlos Salomon; Murray D. Mitchell


Journal of Animal Science | 2017

Characterization of exosomes from body fluids of dairy cows

Yong Q. Koh; Hassendrini N. Peiris; Kanchan Vaswani; S. Meier; C.R. Burke; K. A. Macdonald; J.R. Roche; Fatema B. Almughlliq; Buddhika J. Arachchige; Sarah Reed; Murray D. Mitchell


Theriogenology | 2018

Proteomic content of circulating exosomes in dairy cows with or without uterine infection

Fatema B. Almughlliq; Yong Q. Koh; Hassendrini N. Peiris; Kanchan Vaswani; S. McDougall; Elizabeth M. Graham; C.R. Burke; Buddhika J. Arachchige; Sarah Reed; Murray D. Mitchell

Collaboration


Dive into the Sarah Reed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Q. Koh

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory E. Rice

Royal Brisbane and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

J.R. Roche

University of Auckland

View shared research outputs
Top Co-Authors

Avatar

David Kvaskoff

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

C.G. Walker

University of Auckland

View shared research outputs
Researchain Logo
Decentralizing Knowledge